MURELLE EQUIPE 100 - 150 ErP
(PACK OF 2-3 MURELLE HE 50 R ErP)

INSTALLATION AND SERVICING INSTRUCTIONS

ENSURE THAT THESE INSTRUCTIONS ARE LEFT FOR THE USER AFTER COMPLETION OF THE BENCHMARK SECTION

PLEASE READ THE IMPORTANT NOTICE WITHIN THIS GUIDE REGARDING YOUR BOILER WARRANTY

199839
This boiler may require 2 or more operatives to move it into its installation site, remove it from its packaging and during movement into its installation location. Manoeuvring the boiler may include the use of a sack truck and involve lifting pushing and pulling.

Caution should be exercised during these operations.

Operatives should be knowledgeable in handling techniques when performing these tasks and the following precautions should be considered:
- Grip the boiler at the base
- Be physically capable
- Use personal protective equipment as appropriate e.g. gloves, safety footwear.

During all manoeuvres and handling actions, every attempt should be made to ensure the following unless unavoidable and/or the weight is light.
- Keep back straight
- Avoid twisting at the waist
- Always grip with the palm of the hand
- Keep load as close to the body as possible
- Always use assistance

WARNING

Caution should be exercised when performing any work on this appliance. Protective gloves and safety glasses are recommended.
- Avoid direct contact with sharp edges.
- Avoid contact with any hot surfaces.

NOTICE

Please be aware that due to the wet testing of the appliance, there may some residual water in the hydraulic circuit.
- Protect any surfaces, carpets or floorings.
- Use a suitable container to catch any water that escape when removing the protective caps from the connections.
Important Information

IT IS A STATUTORY REQUIREMENT THAT ALL GAS APPLIANCES ARE INSTALLED BY COMPETENT PERSONS, IN ACCORDANCE WITH THE GAS SAFETY (INSTALLATION AND USE) REGULATIONS (CURRENT EDITION). The manufacturer’s instructions must not be taken as overriding any statutory requirements, and failure to comply with these regulations may lead to prosecution.

No modifications to the appliance should be made unless they are fully approved by the manufacturer.

GAS LEAKS: DO NOT OPERATE ANY ELECTRICAL SWITCH, OR USE A NAKED FLAME. TURN OFF THE GAS SUPPLY AND VENTILATE THE AREA BY OPENING DOORS AND WINDOWS contact the gas emergency service on 0800111999.

Please refer to commissioning instructions for filling in the checklist at the back of this installation guide.

Note: All Gas Safe registered installers carry a ID Card.
You can check your installer is Gas Safe Registered by calling 0800 408 5577

IMPORTANT

Prior to switching on the boiler for the first time, check the following:
- Make sure that there are no liquids or inflammable materials in the immediate vicinity of the boiler.
- Make sure that the electrical connections have been made correctly and that the earth wire is connected to a good earthing system.
- Ensure that tightness and let by test have been conducted, including the internal gas pipe work.
- Make sure that the boiler is set for operation for the type of gas supplied.
- Check that the flue pipe for the outlet of the products of the combustion is unobstructed and has been properly installed.
- Make sure that any isolation valves are open.
- Make sure that the system is filled with water and is thoroughly vented.
- Check that the circulating pump is not jammed.
- Purge the gas supply pipe work.
- Ensure that the checklist is filled in when the commissioning has been completed.

All descriptions and illustrations provided in this manual have been carefully prepared but we reserve the right to make changes and improvements in our products that may affect the accuracy of the information contained in this manual.
1 DESCRIPTION

1.1 INTRODUCTION

This manual is for the construction maintenance and operation of a modular unit composed of multiple premixed condensation boilers in the "MURELLE EQUIPE 100 ErP" and "MURELLE EQUIPE 150 ErP" series linked in sequence/cascade independently of one another.

MURELLE EQUIPE 100 ErP
- Boilers and Mounting Frames and Headers code 9001101
- Low Loss Header Connection Kit code 8101534
- Low Loss Header code 8101550
- Cascade Flue code 9000150

VENTILATION, for guidance see APPENDIX 2.

1.2 DIMENSIONS (fig. 1)

CONNECTIONS

M Heating system flow G 2” (UNI - ISO 7/1)
R Heating system return G 2” (UNI - ISO 7/1)
G Gas supply Flangia PN6 - DN 50
S3 Condensation drain ø 40

DIMENSIONS

Murelle Equipe 100 ErP 150 ErP

<table>
<thead>
<tr>
<th></th>
<th>100 ErP</th>
<th>150 ErP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (mm)</td>
<td>1104</td>
<td>1656</td>
</tr>
<tr>
<td>H (mm)</td>
<td>1984</td>
<td>2013</td>
</tr>
</tbody>
</table>
1.3 TECHNICAL DATA

<table>
<thead>
<tr>
<th></th>
<th>MURELLE EQUIPE 100 ErP</th>
<th>MURELLE EQUIPE 150 ErP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal [80-60°C] [PN max]</td>
<td>kW 93,6 (2 x 46,8)</td>
<td>kW 140,4 (3 x 46,8)</td>
</tr>
<tr>
<td>Nominal [50-30°C] [PN max]</td>
<td>kW 102,4 (2 x 51,2)</td>
<td>kW 153,4 (3 x 51,2)</td>
</tr>
<tr>
<td>Min [80-60°C] [PN min]</td>
<td>kW 9,3</td>
<td>kW 9,3</td>
</tr>
<tr>
<td>Min [50-30°C] [PN min]</td>
<td>kW 10,5</td>
<td>kW 10,5</td>
</tr>
<tr>
<td>Heat input [+]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal [Qn max - Qnw max]</td>
<td>kW 96,0 (2 x 48,0)</td>
<td>kW 144,0 (3 x 48,0)</td>
</tr>
<tr>
<td>Min [Qn min - Qnw min]</td>
<td>kW 9,6</td>
<td>kW 9,6</td>
</tr>
<tr>
<td>Min-max useable yield [80-60°C]</td>
<td>% 96,9/97,5</td>
<td>% 96,9/97,5</td>
</tr>
<tr>
<td>Min-max useable yield [50-30°C]</td>
<td>% 109.0/106,7</td>
<td>% 109.0/106,7</td>
</tr>
<tr>
<td>Useful yield at 30% [40-30°C]</td>
<td>% 108,6</td>
<td>% 108,5</td>
</tr>
<tr>
<td>Losses to arrest to 50°C [EN 15502]</td>
<td>W 352</td>
<td>W 528</td>
</tr>
<tr>
<td>Heating units MURELLE HE 50 R ErP</td>
<td>n° 2</td>
<td>n° 3</td>
</tr>
<tr>
<td>Electrical supply and frequency</td>
<td>V-Hz 230-50</td>
<td>V-Hz 230-50</td>
</tr>
<tr>
<td>Power absorbed (On max)</td>
<td>W 282 (2 x 141)</td>
<td>W 423 (3 x 141)</td>
</tr>
<tr>
<td>Power absorbed (On min)</td>
<td>W 93</td>
<td>W 98</td>
</tr>
<tr>
<td>Power absorbed pump high efficiency</td>
<td>W 150 (2 x 75)</td>
<td>W 225 (3 x 75)</td>
</tr>
<tr>
<td>Degree of electric protection</td>
<td>IP X4D</td>
<td>IP X4D</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal energy efficiency class of the heating system</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Seasonal energy efficiency of the heating system</td>
<td>% 93</td>
<td>% 93</td>
</tr>
<tr>
<td>Sound power of the heating system</td>
<td>dB (A) ---</td>
<td>dB (A) ---</td>
</tr>
<tr>
<td>Setting range single module</td>
<td>°C 20/80</td>
<td>°C 20/80</td>
</tr>
<tr>
<td>Water content of modules</td>
<td>l</td>
<td>25,5</td>
</tr>
<tr>
<td>Max. operating pressure (PMS)</td>
<td>bar (kPa)</td>
<td>3,5 (343)</td>
</tr>
<tr>
<td>Max. operating temperature (T max)</td>
<td>°C</td>
<td>85</td>
</tr>
<tr>
<td>Flue gas temperature at Nominal capacity (80-60°C)</td>
<td>°C</td>
<td>85</td>
</tr>
<tr>
<td>Flue gas temperature at Minimum capacity (80-60°C)</td>
<td>°C</td>
<td>70</td>
</tr>
<tr>
<td>Flue gas temperature at Nominal capacity (50-30°C)</td>
<td>°C</td>
<td>52</td>
</tr>
<tr>
<td>Flue gas temperature at Minimum capacity (50-30°C)</td>
<td>°C</td>
<td>45</td>
</tr>
<tr>
<td>Min/max flow rate of flue gases</td>
<td>g/s</td>
<td>4,2/44,4</td>
</tr>
<tr>
<td>CO2 at Minimum/Nominal capacity [G20]</td>
<td>%</td>
<td>9,0/9,3</td>
</tr>
<tr>
<td>CO2 at Minimum/Nominal capacity [G31]</td>
<td>%</td>
<td>10,0/10,3</td>
</tr>
<tr>
<td>NOx measured [EN 15502 - 1:2015]</td>
<td>mg/kWh</td>
<td>20</td>
</tr>
<tr>
<td>Max. pressure at flue gas release manifold</td>
<td>Pa</td>
<td>160</td>
</tr>
<tr>
<td>PIN number</td>
<td>1312CM5613</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>II2fHP</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>B23-B53-B23P-B53P-C13-C33-C43-C53-C83</td>
<td></td>
</tr>
<tr>
<td>NOx emission class [EN 15502 - 1:2015]</td>
<td>6 (< 56 mg/kWh)</td>
<td></td>
</tr>
<tr>
<td>Main gas nozzles single module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of nozzles</td>
<td>n°</td>
<td>1</td>
</tr>
<tr>
<td>Nozzle diameter [G20]</td>
<td>ø mm</td>
<td>8,0</td>
</tr>
<tr>
<td>Nozzle diameter [G31]</td>
<td>ø mm</td>
<td>5,5</td>
</tr>
<tr>
<td>Consumption at nominal/min. power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal [G20]</td>
<td>m³st/h</td>
<td>10,30 (2 x 5,15)</td>
</tr>
<tr>
<td>Minimum [G20]</td>
<td>m³st/h</td>
<td>1,01</td>
</tr>
<tr>
<td>Nominal [G31]</td>
<td>kg/h</td>
<td>7,46 (2 x 3,73)</td>
</tr>
<tr>
<td>Minimum [G31]</td>
<td>kg/h</td>
<td>0,75</td>
</tr>
<tr>
<td>Gas supply pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[G20]</td>
<td>mbar (kPa)</td>
<td>20 (1,96)</td>
</tr>
<tr>
<td>[G31] - Propane</td>
<td>mbar (kPa)</td>
<td>37 (3,63)</td>
</tr>
</tbody>
</table>

[+] Heat input of the heating system measured using lower heating value (LHV)
1.4 HYDRAULIC CIRCUIT

KEY
1 Cascade heating flow sensor (SMC)
2 Low Loss Header
3 Low Loss Header Connection Kit
5 Condensation drain trap
6 Gas valve
7 ---
8 Fan
9 Heating flow sensor (SM)
10 95°C safety thermostat
11 Flue sensor (SF)
12 Primary exchanger
13 Heating return sensor (SR)
14 Water pressure transducer
15 Non return valve
16 Pump high efficiency
17 ---
20 ---
21 ---
22 Three-way drain valve
23 Heating system cock
24 Condensation drain trap single module
25 Gas cock
26 8 litre expansion vessel (supplied with connection kit)
27 3.5 bar safety valve
29 ---
30 ---

CONNECTIONS
M Heating system flow
R Heating system return
G Gas
S3 Condensation drain
1.5 LOAD LOSS IN HYDRAULIC SEPARATOR SUPPLIED UPON REQUEST IN KITS CODE 8101550 (fig. 3)

![Flow Rate vs Δp Graph](image)

1.6 TECHNICAL DATA PLATE (fig. 3/a)

1.7 INTERFACE WITH OTHER ELECTRONIC DEVICES

The electronic boiler board is prepared for the application of the following electronic devices to be requested separately:
- Remote control SIME HOME code 8092281
- thermoregulator RVS code 8092255
- MIXED ZONE kit code 8092275/76
- SOLAR kit code 8092277
- MODBUS kit code 8092278 which allows to MODBUS communication cascade boilers
- Additional casing board code 8092234 when you connect MIXED ZONE or SOLAR board.

All devices are supplied with instructions for installation and use.

For the configuration of devices SIME HOME e RVS with electronic boiler board set PAR 10.

To access the installer parameters see section 6 (RS-485 board for cascade management).
1.8 CONTENTS OF KIT (cod. 5193650 MURELLE EQUIPE 100 ErP - cod. 5193651 MURELLE EQUIPE 150 ErP (fig. 4)

- N° 2 frame kit code 6294800 with screws TE M8 x 75 for "MURELLE EQUIPE 100 ErP".

- N° 3 frame kit code 6294800 with screws TE M8 x 75 for "MURELLE EQUIPE 150 ErP".

- N° 2 support brackets boiler code 6073324 with screws TE M8 x 16 for "MURELLE EQUIPE 100 ErP".

- N° 3 support brackets boiler code 6073324 with screws TE M8 x 16 per "MURELLE EQUIPE 150 ErP".

- N° 2 shelf kit code 6294811 with washers and nuts M10.
- Nº 2 flow/return manifold kit code 6291954 coated in polyurethane with flanges, seal and M16 fixing screws for "MURELLE EQUIPE 100 ErP".

- Nº 2 flow/return manifold kit code 6291955 coated in polyurethane with flanges, seal and M16 fixing screws for "MURELLE EQUIPE 150 ErP".

- Nº 1 gas collector "MURELLE EQUIPE 100 ErP" code 6286330 with nuts, M12 fixing screws and flange.

- Nº 1 gas collector "MURELLE EQUIPE 150 ErP" code 6286331 with nuts, M12 fixing screws and flange.

- Nº 1 condensation drain manifold kits for "MURELLE EQUIPE 100 ErP" consisting of 2 pipe connection, 2 pipe e 1 cap. The manifold is supplied with brackets, nuts and M8 screws.

- Nº 1 condensation drain manifold kits for "MURELLE EQUIPE 150 ErP" consisting of 3 pipe connection, 3 pipe e 1 cap. The manifold is supplied with brackets, nuts and M8 screws.
- N° 2 three-way flow/return and gas cock kits, connecting pipes, 3/4” nipple, non-return valve and seals for the connection of two modules “MURELLE EQUIPE 100 ErP”.

- N° 3 three-way flow/return and gas cock kits, connecting pipes, 3/4” nipple, non-return valve and seals for the connection of three modules “MURELLE EQUIPE 150 ErP”.

CAUTION: Before assembling three-way drain valve, orient the ball regulation lever as shown in the figure.

NOTE: Section 5 show the electrical connection for the sensors.
1.9 COMPOSITION KIT MANIFOLD EXHAUST (fig. 5)

MURELLE EQUIPE 100 ErP

- Kit manifold exhaust for “MURELLE EQUIPE 100 ErP” is composed of:
 - N. 2 pipe ø 160 code 5192950
 - N. 2 extension L. 150 ø 80 code 6296539
 - N. 1 manifold tap code 5192960.

MURELLE EQUIPE 150 ErP

- Kit manifold exhaust for “MURELLE EQUIPE 150 ErP” is composed of:
 - N. 3 pipe ø 160 code 5192950
 - N. 3 extension L. 150 ø 80 code 6296539
 - N. 1 manifold tap code 5192960.

CAUTION: Use silicone grease to ease the connection of the flue components.

Fig. 5
1.10 LOW LOSS HEADER CONNECTION KIT (fig. 6)

- № 2 flanged heating system flow/return stub pipes complete with expansion vessel 8 liters code 6245108, connection pipe code 6227661, gaskets and nipple.

1.11 LOW LOSS HEADER code 8101550 (order separately) (fig. 7)

- № 1 Hydraulic separator with seals, nuts and M16 screws.
2 ASSEMBLING THE BOILER SUPPORT FRAME

1. Screw support brackets boiler to the boiler support frame with washer and M8 screws. Alongside the supporting frames of each module and locking them together with TE M8 x 75 screws. Secure the assembled frames to the wall or other secure structure. Attach each module “MURELLE HE 50 R ErP” to the boiler support frame and fix with washer and M10 nuts.

2. Fix the two shelf brackets to boiler support frame with four washers and M10 nuts.
3 Fitting Connections and Condensate Drain

1. Mount the condensation drain manifold brackets with screws, washer and M5 nuts. Insert the condensation drain manifold in those brackets. Connect the each condensate boiler drain trap to the condensation drain manifold.
Install blind flanges with gaskets to flow / return manifold with screws and M12 nuts. Fix the flow / return manifold in its support with screws, washers and M16 nuts.

2 Assemble the blank flange with gas gasket to manifold with screws and M12 nuts. Secure the gas header with screws, washers and M8 nuts.

CAUTION: The fuel shut-off valve is not provided.
Install:
- three-way flow/return valve
- gas cock
- non-return valve
to the respective manifolds and install the pipes to the connections of the boiler with the respective seals.

CAUTION: Before assembling three-way drain valve, orient the ball regulation lever as shown in the figure.

M Heating system flow
R Heating system return
G Gas supply
Connection of the hydraulic separator, if supplied. Assemble with seals and M12 fixing screws and nuts.

CAUTION: Assemble the air vent valve, the drain valve and sleeve 1/2” (not supplied) in the position as shown in figure.
4 CASCADE FLUE

1. Assemble the cascade flue as shown. Use silicone grease to ease connection of the components. The flue can be orientated to the left or the right, but always must fall to the condensate drain.

It is provided in each boiler a rubber seal Ø 80 code 6230402 to be placed in the exhaust fumes as shown.

When boilers are used with a cascade flue PAR 1 on each boiler must be reset. On natural gas PAR 1 = 6 On LPG PAR 1 = 14

Parameter 1 will be displayed. Change the value using the and . The standard display returns automatically after 60 seconds, or by pressing one of the control keys.

AVAILABLE AS OPTIONAL, THE FOLLOWING Ø 160 POLYPROPYLENE EXHAUST FUMES ACCESSORIES

- Extension L. 500 code 8102522
- Extension L. 1000 code 8102523
- Extension 45° MF code 8102520
- 90° Bend MF code 8102521
1. Connect the RS 485 boards as shown.

Connect the external temperature sensor (SE) to **MASTER** boiler and heating flow sensor (SMC) to **SLAVE 1**.
After connecting in cascade the boilers must be configured.
One boiler must be assigned as the master and others as slaves.
To do this PAR 15 on each boiler must be reset.

On each boiler press any key to wake up the display. Then press simultaneously the and the buttons for 5 seconds until the display is as shown.

Press the key until PAR 15 is shown in the bottom right hand corner.
Using the and keys reset the value accordingly.
On the MASTER set PAR 15 = 0
On the first SLAVE set PAR 15 = 1
*Second SLAVE set PAR 15 = 2,
To confirm the setting press

*CASCADE WITH MORE THAN TWO BOILERS
When more than two boilers are connected in cascade, it is essential that the OEM parameter on the “Master” boiler is reset to coincide with the number of boilers in the cascade.
This must be done after setting PAR 15 on the designated Master boiler to “0”

On the “Master” boiler press any key to wake up the display. Then press simultaneously the and the buttons for 5 seconds until the display is as shown.

Then press again, simultaneously, the and the buttons for 2 seconds until the display shows.

Next press, in the order shown .
The display will be as shown.

Press the button, and the display will show

Use the and buttons to set the number of boilers in the cascade.
Then press to confirm the settings.
It is recommended that your boiler and heating system are regularly serviced and maintained, in line with manufacturers' instructions, and that the appropriate service / interim work record is completed.

When completing a service record (as below), please ensure you have carried out the service as described in the manufacturers’ instructions. Always use the manufacturers’ specified spare parts.

SERVICE & INTERIM BOILER WORK RECORD

SERVICE/INTERIM WORK ON BOILER

Engineer name:

Company name:

Telephone No:

Gas Safe registration No:

Max rate CO:

ppm CO₂:

% CO/CO₂:

Min rate CO:

ppm CO₂:

% CO/CO₂:

Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?

Yes

No

Gas rate:

m³/h OR ft³/h

Min rate CO:

ppm CO₂:

% CO/CO₂:

Max rate CO:

ppm CO₂:

% CO/CO₂:

Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?

Yes

No

Parts fitted:

System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions.

Yes

n/a

Comments:

Signature:

Delete as appropriate Date:

* A System inhibitor efficiency test is required on every annual service in accordance with the manufacturers' instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

SERVICE/INTERIM WORK ON BOILER

Engineer name:

Company name:

Telephone No:

Gas Safe registration No:

Max rate CO:

ppm CO₂:

% CO/CO₂:

Min rate CO:

ppm CO₂:

% CO/CO₂:

Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?

Yes

No

Gas rate:

m³/h OR ft³/h

Min rate CO:

ppm CO₂:

% CO/CO₂:

Max rate CO:

ppm CO₂:

% CO/CO₂:

Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?

Yes

No

Parts fitted:

System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions.

Yes

n/a

Comments:

Signature:

Delete as appropriate Date:

* A System inhibitor efficiency test is required on every annual service in accordance with the manufacturers' instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

© Heating and Hotwater Industry Council (HHIC)
www.centralheating.co.uk
SERVICE & INTERIM BOILER WORK RECORD

It is recommended that your boiler and heating system are regularly serviced and maintained, in line with manufacturers’ instructions, and that the appropriate service / interim work record is completed.

Service provider

When completing a service record (as below), please ensure you have carried out the service as described in the manufacturers’ instructions. Always use the manufacturers specified spare parts.

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone No.:</td>
<td>Gas Safe registration No.:</td>
</tr>
<tr>
<td>Max rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Min rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?</td>
<td>Yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Yes No</td>
</tr>
<tr>
<td>Ware parts fitted? Yes No</td>
<td></td>
</tr>
<tr>
<td>Parts fitted:</td>
<td></td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions.</td>
<td>yes n/a</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
</tbody>
</table>

*A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone No.:</td>
<td>Gas Safe registration No.:</td>
</tr>
<tr>
<td>Max rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Min rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?</td>
<td>Yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Yes No</td>
</tr>
<tr>
<td>Ware parts fitted? Yes No</td>
<td></td>
</tr>
<tr>
<td>Parts fitted:</td>
<td></td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions.</td>
<td>yes n/a</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
</tbody>
</table>

*A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone No.:</td>
<td>Gas Safe registration No.:</td>
</tr>
<tr>
<td>Max rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Min rate CO ppm</td>
<td>CO₂ %</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers' instructions, and readings are correct?</td>
<td>Yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Yes No</td>
</tr>
<tr>
<td>Ware parts fitted? Yes No</td>
<td></td>
</tr>
<tr>
<td>Parts fitted:</td>
<td></td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions.</td>
<td>yes n/a</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
</tbody>
</table>

*A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

© Heating and Hotwater Industry Council (HHIC)
INSTALLATION CHECKLIST

SINGLE BOILER INSTALLATION

PAR 14 (See section 2.6.6) When BMS input used, and input is 10v, the required flow temperature = °C Set value of PAR 14

BOILERS INSTALLED IN CASCADE

ALL BOILERS IN THE CASCADE

PAR 15 (see fig 4/b) The cascade address must be set in each boiler in the cascade, denoting the master and each slave (Master = 0)

<table>
<thead>
<tr>
<th>Boiler 1</th>
<th>Boiler 2</th>
<th>Boiler 3</th>
<th>Boiler 4</th>
<th>Boiler 5</th>
<th>Boiler 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set value of PAR 15

PAR 1 (see section 2.2.2) When installed with a cascade flue, incorporating a clappet (non return) valve, PAR 1 must be set accordingly on each boiler in the cascade

<table>
<thead>
<tr>
<th>Boiler 1</th>
<th>Boiler 2</th>
<th>Boiler 3</th>
<th>Boiler 4</th>
<th>Boiler 5</th>
<th>Boiler 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set value of PAR 1

MASTER BOILER

OEM A1 (see section 2.2.2) When the number of boilers in the cascade is greater than two, the OEM A1 on the MASTER boiler (boiler with PAR 15=0), must be set to the same value as the number of boilers in the cascade. This can only be done after PAR 15 has been set.

<table>
<thead>
<tr>
<th>Number of boilers in cascade</th>
<th>Set value of OEM A1 on boiler number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAR 14 (See section 2.6.6) When BMS input used, and input is 10v, the required flow temperature = °C Set value of PAR 14 on the master boiler
Commissioning Checklist for Boilers in Cascade
This checklist is for guidance only, and is not a full installation safety check

Address

Engineer

<table>
<thead>
<tr>
<th>Satisfactory visual check of flue Y/N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue within allowable length and correctly terminated Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm Tightness of installation pipework downstream of Isolating valve using leak detection fluid Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check tightness of all valves Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carryout ignition test of boiler with gas isolated to ensure boiler fails safe Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn on gas supply to boiler and isolate main burner (disconnect gas valve) and ensure boiler goes to lockout Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset boiler lockout and retry, ensuring boiler again locks out Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconnect gas valve, reset boiler lockout, and ensure boiler lights and is stable Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test safety devices Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety stat(TS) - Disconnect - the boiler locks out Y/N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flue analysis

<table>
<thead>
<tr>
<th>Boiler Output</th>
<th>Boiler 1</th>
<th>Boiler 2</th>
<th>Boiler 3</th>
<th>Boiler 4</th>
<th>Boiler 5</th>
<th>Boiler 6</th>
<th>Boiler 7</th>
<th>Boiler 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiler size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed By</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manuacturers Instructions

Manufacturer’s instructions must be followed for the correct connection of the condensate discharge pipe from the boiler as this may vary due to the design of the boiler. For example a visible air break and trap is not required if there is a trap with a minimum condensate seal of 75 mm incorporated into the boiler.

Internal Pipe Run In Unheated Spaces
Condensate discharge pipes that are routed in an unheated space such as a loft or garage should be insulated to prevent freezing.

Internal Condensate Pipe Discharge Termination

Internal condensate discharge pipework must be a minimum of 19mm ID (typically 22mm OD) plastic pipe or as per manufacturer’s instructions and this should “fall” a minimum of 45mm per metre away from the boiler, taking the shortest practicable route to the termination point.

(45mm as per BS6798, 52mm per metre as per industry practice is specified in the following diagrams)

To minimise the risk of freezing during prolonged sub-zero conditions, an internal “gravity discharge point” such as an internal soil stack (preferred method), internal kitchen, utility room or bathroom waste pipe e.g. from a sink, basin, bath or shower should be adopted, where possible.

Note - A suitable permanent connection to the foul waste pipe should be used. Figures 1, 2(a), 2(b) show appropriate connection methods.
Figure 1 – Connection of condensate discharge pipe to internal soil and vent stack.
Note – Check manufacturer’s instructions to see if an air break is required.

Key

1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal
 of 75 mm incorporated into the boiler
5 Soil and vent stack
6 Invert
7 450 mm minimum up to three storeys
8 Minimum internal diameter 19 mm
Internal Condensate Pipe Discharge Termination

Figure 2(a) – Connection of a condensate discharge pipe downstream of a sink, basin, bath or shower waste trap.
Note – Check manufacturer’s instructions to see if an air break is required.

Key
1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 75 mm incorporated into the boiler. In this case the 100 mm is measured to the trap in the boiler.
5 Sink, basin, bath or shower
6 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45 °
Note – the maximum external condensate discharge length is 3 metres
7 Sink lip
8 Minimum internal diameter 19 mm
9 Pipe size transition
10 Minimum internal diameter 30 mm
11 Water/weather proof insulation
12 Drain cover/leaf guard
Manufacturers Instructions must be referred to when installing boiler condensate discharge pipes.

Key

1. Boiler
2. Visible air break at plug hole – alternative connection can be below sink trap
3. 75 mm sink, basin, bath or shower waste trap
4. Sink, basin, bath or shower with integral overflow
5. Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45°

 - Note – the maximum external condensate discharge length is 3 metres
6. Minimum internal diameter 19 mm
7. Pipe size transition
8. Minimum internal diameter 30 mm
9. Water/weather proof insulation
10. Fit drain cover/leaf guard
Internal Condensate Pipe Discharge Termination

The possibility of waste pipes freezing downstream of the connection point should be considered when determining a suitable connection point - e.g. a slightly longer pipe run to an internal soil stack may be preferable to a shorter run connecting into a kitchen waste pipe discharging directly through the wall to an external drain.

Note - Where “gravity discharge” to an internal termination is not physically possible (e.g. the discharge point is above the appliance location, or access is obstructed by a doorway), or where very long internal pipe runs would be required to reach a suitable discharge point, then a condensate pump should be used.

External waste pipes from kitchens, utility rooms or bathrooms such as sink, basin, and bath or shower waste outlets should be insulated with waterproof UV resistant, class 0 material, terminated below the grid but above the water line and a drain/leaf guard fitted. The waste pipe should be cut at 45 degrees where it terminates into the grid. (See insulation section for guidance on suitable materials).

Condensate Pumps

Use of a Condensate Pump to an Internal Termination
Condensate can be removed using a proprietary condensate pump, of a specification recommended by the boiler or pump manufacturer. In order to minimise the risk of freezing during prolonged sub-zero spells, one of the following methods internal to the property for terminating the boiler condensate pump to a foul water discharge point should be adopted such as an internal soil stack (preferred method), internal kitchen, utility room or bathroom waste pipe such as sink, basin, and bath or shower waste. Figure 3 shows a typical connection method.
Manufacturers Instructions must be referred to when installing boiler condensate discharge pipes.

Internal Condensate Pipe Discharge Termination

Figure 3 – Connection of a condensate pump - typical method (NB manufacturer’s detailed instructions should be followed).

Note – Any external pipe work should be insulated, pipe cut at 45 degrees and a drain/leaf guard fitted.

![Diagram of internal condensate pipe discharge termination]

Key
- 1 Condensate discharge from boiler
- 2 Condensate pump
- 3 Visible air break at plug hole
- 4 Sink or basin with integrated overflow
- 5 75mm sink waste trap

- 1 Boiler
- 2 Visible air break at plug hole
- 3 75 mm sink, basin, bath or shower waste trap
- 4 Sink, basin, bath or shower with integral overflow
- 5 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45°. Note – the maximum external condensate discharge length is 3 metres
- 6 Minimum internal diameter 19 mm
- 7 Pipe size transition
- 8 Minimum internal diameter 30 mm
- 9 Water/weather proof insulation
- 10 Fit drain cover/leaf guard
External Connections

Only fit an external boiler condensate drain connection if an internal gravity or pumped connection is impractical to install.

The pipe work from the boiler should be of a minimum 19mm ID or as per manufacturer’s instructions and the condensate discharge pipe shall be run in a standard drainpipe material, e.g. poly (vinyl chloride) (PVC), un-plasticized poly (vinyl chloride) (PVC-U), acrylonitrile butadiene-styrene (ABS), polypropylene (PP) or chlorinated poly (vinyl chloride) (PVC-C).

Note - Fixing centres for brackets should be a maximum of 300mm for flexible pipe and 500mm for solid pipe and manufacturer’s recommendations should be followed.

The condensate pipe should be run internally as far as possible before going externally and the pipe diameter should be increased to a minimum of 30mm ID (typically 32mm OD) before it passes through the wall. The angle of the pipe should slope downwards by at least 3 degrees as it passes through the wall to assist in maintaining a good velocity as the condensate exits the building.

The external pipe run should be kept as short as possible to a maximum of 3 metres, taking the most direct and “most vertical” route to the discharge point, with no horizontal sections in which condensate might collect.
Manufacturers Instructions must be referred to when installing boiler condensate discharge pipes.

External Connections

Figure 4 – Connection of condensate discharge pipe to external soil and vent stack

Key
1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 75mm incorporated into the boiler.
5 Soil and vent stack
6 Invert
7 450mm minimum up to three storeys
8 Minimum internal diameter 19 mm
9 Pipe size transition point
10 Minimum internal diameter 30mm
11 Water/weather proof insulation
External Connections

Alternative Solutions
Cold weather protection methods approved or endorsed by boiler manufacturers and/or service organisations may be adopted if these are considered suitable by the parties involved. It is the responsibility of the manufacturer of these products to ensure they have completed the necessary testing or calculations to ensure the product offers suitable protection to prevent the condensate pipe from freezing. The product manufacturer should provide information as to what level of external temperature and for what time period the product can protect against sub-zero temperatures, i.e. -15°C for 48 hours. BS6798 refers to devices that pump the condensate produced by a condensing boiler to a fine misting nozzle in the boiler flue terminal so that the condensate is discharged with the hot flue gas. (BS6798 section 6.3.8 note 4). The boiler manufacturer’s instructions will provide advice regarding fitting and siting of the flue terminal to ensure safe disposal of the condensate.

Additional Measures
At least one of the following measures should be fitted in addition to the measures detailed above for external condensate discharge pipes

- Insulate external pipe with a minimum thickness of insulation to be 19mm “O” class PVC coated material.
- Fit trace heating – with insulation as recommended by manufacturer.
- Fit internal auxiliary(additional) high volume syphon unit

Auxiliary Syphon – Fitted Internally
Auxiliary siphons fitted inside the premises assist with the siting of the boiler where an external condensate pipe must be fitted. The storage capacity of the auxiliary siphon increases the volume of condensate discharge reducing the risk of freezing. A further reduction in the potential for the pipe to freeze is achieved when combined with the external insulation requirements.
External Connections

Electric Trace Heating
Trace heating with an external thermostat can be fitted to the external condensate pipe to raise the temperature of the condensate pipe in freezing conditions. Trace heating takes the form of an electrical heating element run in physical contact along the length of the condensate pipe. The pipe is usually covered with thermal insulation to retain heat losses from the pipe. Heat generated by the element then maintains the temperature of the pipe. If such a system is used then the installation instructions of the trace heating manufacturer and any specific recommendations regarding pipe diameter, insulation, etc. should be followed. All other relevant guidance on condensate discharge pipe installation should also be followed.

Insulation Materials
Insulation used for external condensate pipes, sink or washing machine waste pipes should be of class ‘O’ grade with an outer coating that is weather proof, bird/animal proof, and UV resistant finish. A minimum of 19mm thick insulation is recommended for 32mm external pipes.

Use of Air Breaks In Condensate Discharge Pipes
Heating engineers should follow manufacturer’s instructions on the use of air breaks in condensate discharge pipes. A visible air break is not required if the boiler condensate trap has a minimum condensate seal of 75mm incorporated into the boiler.

Connecting to a rain water downpipe/External Soil Stack
When an external soil stack or rain water downpipe is used as the termination (NB only permissible if this downpipe passes to a combined foul and rainwater drainage system) an external air break must be installed between the condensate discharge pipe and the downpipe to avoid reverse flow of rainwater/sewage into the boiler should the downpipe itself become flooded or frozen.

Figure 5 shows a suitable connection method. Pipe insulation should be fitted.
External Connections

Figure 5 – External termination to rainwater downpipe (NB only combined foul/rainwater drain)

Key
1 Condensate discharge pipe from boiler
2 Pipe size transition point
3 Water/weather proof insulation
4 43mm 90° male/female bend
5 External rain water pipe into foul water
6 External air break
7 Air gap
8 68mm PVCu strap on fitting
9 Minimum internal diameter 19mm
10 Minimum internal diameter 30mm
11 End cut at 45°
External Connections

External Termination of the Condensate Pipe
Where the condensate discharge pipe is terminated over an open foul drain or gully, the pipe should terminate below the grating level, but above water level, in order to minimise “wind chill” at the open end. Pipe drainage and resistance to freezing will be improved if the termination end of the condensate pipe is cut at 45 degrees as opposed to a straight cut.

The use of a drain cover (such as those used to prevent blockage by leaves) must be fitted to offer further protection from wind chill. Figure 6 (following page) shows a suitable connection method. Where the condensate drain pipe terminates in a purpose-designed soakaway (see BS 6798:2014 or boiler installation manual for soakaway design requirements) any above-ground section of condensate discharge pipe should be run and insulated as described above. Figure 7 (following page) shows a suitable connection method.

Unheated Areas in Buildings
Internal condensate drainage pipes run in unheated areas such as lofts, basements and garages should be treated as external connections and insulated accordingly. Weather proof materials may not be necessary and should be assessed by the heating engineer.

Use of Air Breaks In Condensate Discharge Pipes
Installers should follow the manufacturer’s instructions on the use of air breaks in condensate discharge pipes. A visible air break and trap is not required if the boiler condensate trap has a minimum condensate seal of 75 mm incorporated into the boiler.
External Connections

Figure 6 – External drain, gully or rainwater hopper

Key
1 Boiler
2 Visible air break
3 38mm minimum trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 38 mm incorporated into the boiler – refer to manufacturers instructions
5 External length of pipe 3 m maximum
6 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45°
7 Minimum internal diameter 19 mm
8 Pipe size transition point
9 Minimum internal diameter 30 mm
10 Water/weather proof insulation
11 Fit drain cover/leaf guard
Figure 7 – Example of a purpose made soakaway

Key
1 Condensate discharge pipe from boiler
2 Ground (this section of the condensate discharge pipe may be run either above or below round level); End cut at 45°
3 Diameter 100 mm minimum plastic tube
4 Bottom of tube sealed
5 Limestone chippings
6 Two rows of three 12 mm holes at 25 mm centres, 50 mm from bottom of tube and facing away from house
7 Hole depth 400 mm minimum by 300 mm diameter
8 Minimum internal diameter 19 mm
9 Pipe size transition point
10 Minimum internal diameter 30 mm
11 Water/weather proof insulation
8 APPENDIX 2 (VENTILATION GUIDENCE)

Ventilation Requirements for "Murelle Equipe 100 - 150 ErP" Cascade

BS6644:2005 requires the temperatures in the room or compartment not to exceed certain levels:
- 25°C up to 100 mm from floor level
- 32°C 1500 mm above floor level
- 40°C 100 mm from ceiling level

The following provided for guidance only, and assumes the ventilation air is taken directly from outside. The size of the vents may need to be increased in respect of other appliances installed in the same area, and seasonal use. Take care that the position of low level vents would not be subject to adverse weather conditions, i.e. flooding.

When installed as a class B appliance (opened flue, not room sealed).

Installed in a room

High level, within 15% of room height from the ceiling = 2 cm² per Kw net heat input (Nominal)
Low Level, low as possible within G20 - 1000 mm G31 - 250 mm = 4 cm² per Kw net heat input (Nominal)

Each model requirement for their net heat input is:

<table>
<thead>
<tr>
<th>Model</th>
<th>Heat Input</th>
<th>High Level</th>
<th>Low Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ErP</td>
<td>192 cm²</td>
<td>384 cm²</td>
<td></td>
</tr>
<tr>
<td>150 ErP</td>
<td>288 cm²</td>
<td>576 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Installed in a compartment or enclosure

High Level, within 15% of room height from the ceiling = 5 cm² per Kw net heat input (Nominal)
Low Level, low as possible within G20 - 1000 mm G31 - 250 mm = 10 cm² per Kw net heat input (Nominal)

Each model requirement for their net heat input is:

<table>
<thead>
<tr>
<th>Model</th>
<th>Heat Input</th>
<th>High Level</th>
<th>Low Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ErP</td>
<td>480 cm²</td>
<td>960 cm²</td>
<td></td>
</tr>
<tr>
<td>150 ErP</td>
<td>720 cm²</td>
<td>1440 cm²</td>
<td></td>
</tr>
</tbody>
</table>

When installed as a class C appliance (room sealed)

Installed in a room

High level, within 15% of room height from the ceiling = 2 cm² per Kw net heat input (Nominal)
Low Level, low as possible within G20 - 1000 mm G31 - 250 mm = 2 cm² per Kw net heat input (Nominal)

Each model requirement for their net heat input is:

<table>
<thead>
<tr>
<th>Model</th>
<th>Heat Input</th>
<th>High Level</th>
<th>Low Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ErP</td>
<td>192 cm²</td>
<td>192 cm²</td>
<td></td>
</tr>
<tr>
<td>150 ErP</td>
<td>288 cm²</td>
<td>288 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Installed in a compartment or enclosure

High Level, within 15% of room height from the ceiling = 5 cm² per Kw net heat input (Nominal)
Low Level, low as possible within G20 - 1000 mm G31 - 250 mm = 5 cm² per Kw net heat input (Nominal)

Each model requirement for their net heat input is:

<table>
<thead>
<tr>
<th>Model</th>
<th>Heat Input</th>
<th>High Level</th>
<th>Low Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ErP</td>
<td>480 cm²</td>
<td>480 cm²</td>
<td></td>
</tr>
<tr>
<td>150 ErP</td>
<td>720 cm²</td>
<td>720 cm²</td>
<td></td>
</tr>
</tbody>
</table>
PRODUCT DETAILS

<table>
<thead>
<tr>
<th>Murelle Equipe</th>
<th>100 ErP</th>
<th>150 ErP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe efficienza energetica stagionale riscaldamento
Clase de eficiencia energética estacional en calefacción
Classe de eficiência energética do aquecimento ambiente sazonal
C.H. energy efficiency class</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Potenza termica [kW]
Potencia térmica [kW]
Potência calorífica [kW]
Heat output [kW]</td>
<td>93</td>
<td>140</td>
</tr>
<tr>
<td>Consumo annuo di energia riscaldamento (GJ)
Consumo anual de energia en calefacción (GJ)
Consumo anual de energia para aquecimento (GJ)
C.H. annual energy consumption (GJ)</td>
<td>160</td>
<td>232</td>
</tr>
<tr>
<td>Efficienza energetica stagionale riscaldamento (%)
Eficiencia energética estacional en calefacción [%]
Eficiência energética do aquecimento sazonal [%]
C.H. seasonal energy efficiency (%)</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Potenza sonora dB(A)
Potencia sonora dB(A)
Potência sonora dB(A)
Sound power dB(A)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Specific precautionary measures to be adopted at the time of assembly, installation or maintenance of the equipment are contained in the boiler instruction manual

Conforme all’allegato IV (punto 1) del regolamento delegato (UE) N° 811/2013 che integra la Direttiva 2010/30/UE

Con arreglo al anexo IV (punto 1) del Reglamento Delegado (UE) Nº 811/2013 que completa la Directiva 2010/30/UE

Em conformidade com o anexo IV (ponto 1) do regulamento delegado (UE) N.o 811/2013 que complementa a Diretiva 2010/30/UE

Conforming to Annex IV (Item 1) of the Delegated Regulations [EU] No. 811/2013 which supplements Directive 2010/30/EU
Murelle Equipe 100 ErP (code 8117000)

Informazioni da fornire per le caldaie per il riscaldamento d’ambiente e le caldaie miste

<table>
<thead>
<tr>
<th>Elenco / Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenza termica nominale</td>
<td>P_t</td>
<td>93</td>
<td>kW</td>
</tr>
<tr>
<td>Efficienza energetica stagionale del riscaldamento d’ambiente</td>
<td>η_s</td>
<td>93</td>
<td>%</td>
</tr>
</tbody>
</table>

Apparecchi di cogenerazione per il riscaldamento d’ambiente

- Munito di un apparecchio di riscaldamento supplementare: Equipado con un aparato de calefacción suplementario:
 - No

Per le caldaie per il riscaldamento d’ambiente e le caldaie miste: efficienza utile

- Per le caldaie per il riscaldamento d’ambiente e le caldaie miste: efficienza utile
- Para calderas de calefacción de espacios y calderas mixtas: eficiencia útil

Consumo diariamente di elettricità / Consumo diariamente di combustibile

- Consumo diariamente di elettricità / Consumo diariamente di combustibile
- Daily electricity consumption / Daily fuel consumption

Recapitolo / Datos de contacto

- Fonderie Sime S.p.A. Via Garbo 27, 37045 Legnago (VR) ITALIA
- Os valores do desempenho calculados com valor calorífico superior H_s / Dados de rendimento calculados com valor calorífico superior H_s
Murelle Equipe 150 ErP (code 8117001)

<table>
<thead>
<tr>
<th>Elemento / Elemento</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenza termica nominal</td>
<td>P_t</td>
<td>140</td>
<td>kW</td>
</tr>
<tr>
<td>Nominal heat output for space heating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Informazioni da fornire per le caldaie per il riscaldamento d’ambiente e le caldaie miste

| Informazioni obbligatoria per caldaie a riscaldamento di spazio e caldaie miste |
|-------------------------------|-------------------|
| Caldaia a condensazione / Caldera de condensación / Condensing boiler: Yes |
| Caldaia a bassa temperatura / Caldera de baja temperatura: Yes |
| Caldaia di tipo B11 / Caldera de tipo B11 / B11 boiler: No |

Apparecchio di cogenerazione per il riscaldamento d’ambiente: Equipment for cogeneration for space heating: Aaquecedor de ambiente con cogeneración:

<table>
<thead>
<tr>
<th>Aquecedor space heater:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Muto di un apparecchio di riscaldamento supplementare: Equipado con un aparato de calefacción suplementario:</td>
</tr>
<tr>
<td>Equipado con aquecedor complementar: Equipped with a supplementary heater:</td>
</tr>
</tbody>
</table>

Apparecchio di riscaldamento misto / Equipamento de calefacción misto: Aquecedor combinado / Combunation heater: No

El emento / item

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_s</td>
<td>93</td>
<td>%</td>
</tr>
</tbody>
</table>

Potenza termica nominal / Potencia térmica nominal / Potência calorífica nominal

| P_t | 140 | kW |

Nominal heat output for space heating / Nominal heat output for space heating

| η_s | 93 | % |

Efficienza energetica stagionale del riscaldamento d’ambiente / Eficiencia energética estacional de calefacción / Eficiência energética stagional do aquecimento:

| η_s | 93 | % |

Consumo diaria di elettricità / Consumo diaria di combustible

| NOx | 20 | mg/KWh |

Para calderas de calefacción de espacios y calderas mixtas: eficiencia útil

| η_s | 93 | % |

Potenza calorífica útil / Potencia calorífica útil / Potência calorífica útil

| η_s | 93 | % |

Consumo energetico del bruciatore di accensione / Consumo energético del quemador de encendido / Consumo de energia do queimador de ignição

| η_s | 93 | % |

Ignition burner power consumption / Desempenho do combustível / Consumo de combustível

| η_s | 93 | % |

Dispersione termica in standby / Dispersione termica em modo de vigilia / Standby heat loss

| η_s | 93 | % |

Emissiones de NOx / Emissiones de NOx / Emissão de nitrogênio oxídeos

| η_s | 93 | % |

Consumo quotidiano di energia / Consumo daily electricidad / Daily electricity consumption

| η_s | 93 | % |

Consumo diario de combustible / Consumo diario de combustível / Daily fuel consumption

| η_s | 93 | % |

Recapitul / Datos de contacto

| Fonderia Sime S.p.A., Via Garbo 27, 37045 Legnago (VR) ITALIA |

Elementos de contacto / Contact details

| 42 |