Condensing wall mounted boiler

MURELLE ADVANCED HE MkII

USER, INSTALLATION AND SERVICING INSTRUCTIONS

ENSURE THAT THESE INSTRUCTIONS ARE LEFT FOR THE USER AFTER COMPLETION OF THE BENCHMARK SECTION

PLEASE READ THE IMPORTANT NOTICE WITHIN THIS GUIDE REGARDING YOUR BOILER WARRANTY

BOILER DETAILS

please position here a sticker from installation pack

TRANSLATION OF THE ORIGINAL INSTRUCTIONS

please position here a sticker from installation pack

sime®
SAFE HANDLING

This boiler may require 2 or more operatives to move it into its installation site, remove it from its packaging and during movement into its installation location. Manoeuvring the boiler may include the use of a sack truck and involve lifting, pushing and pulling. Caution should be exercised during these operations.

Operatives should be knowledgeable in handling techniques when performing these tasks and the following precautions should be considered:
- Grip the boiler at the base
- Be physically capable
- Use personal protective equipment as appropriate e.g. gloves, safety footwear.

During all manoeuvres and handling actions, every attempt should be made to ensure the following unless unavoidable and/or the weight is light.
- Keep back straight
- Avoid twisting at the waist
- Always grip with the palm of the hand
- Keep load as close to the body as possible
- Always use assistance

WARNING
Caution should be exercised when performing any work on this appliance.
Protective gloves and safety glasses are recommended.
- Avoid direct contact with sharp edges.
- Avoid contact with any hot surfaces.

NOTICE
Please be aware that due to the wet testing of the appliance, there may be some residual water in the hydraulic circuit.
- Protect any surfaces, carpets or floorings.
- Use a suitable container to catch any water that escape when removing the protective caps from the connections.
Benchmark places responsibilities on both manufacturers and installers.* The purpose is to ensure that customers** are provided with the correct equipment for their needs, that it is installed, commissioned and serviced in accordance with the manufacturer’s instructions by competent persons and that it meets the requirements of the appropriate Building Regulations. Installers are required to carry out work in accordance with the following:

Standards of Work
- Be competent and qualified to undertake the work required.
- Install, commission, service and use products in accordance with the manufacturer’s instructions provided.
- Ensure that where there is responsibility for design work, the installation is correctly sized and fit for purpose.
- Meet the requirements of the appropriate Building Regulations. Where this involves notifiable work be a member of a Competent Persons Scheme or confirm that the customer has notified Local Authority Building Control (LABC), prior to work commencing.
- Complete all relevant sections of the Benchmark Checklist/Service Record when carrying out commissioning or servicing of a product or system.
- Ensure that the product or system is left in a safe condition and, whenever possible, in good working order.
- Highlight to the customer any remedial or improvement work identified during the course of commissioning or servicing work.
- Refer to the manufacturer’s helpline where assistance is needed.
- Report product faults and concerns to the manufacturer in a timely manner.

Customer Service
- Show the customer any identity card that is relevant to the work being carried out prior to commencement or on request.
- Give a full and clear explanation/demonstration of the product or system and its operation to the customer.
- Hand over the manufacturer’s instructions, including the Benchmark Checklist, to the customer on completion of an installation.
- Obtain the customer’s signature, on the Benchmark Checklist, to confirm satisfactory demonstration and receipt of manufacturer’s instructions.
- Advise the customer that regular product servicing is needed, in line with manufacturers’ recommendations, to ensure that safety and efficiency is maintained.
- Respond promptly to calls from a customer following completion of work, providing advice and assistance by phone and, if necessary, visiting the customer.
- Rectify any installation problems at no cost to the customer during the installer’s guarantee period.

*The use of the word “installer” is not limited to installation itself and covers those carrying out installation, commissioning and/or servicing of heating and hot water products, or the use of supporting products (such as water treatment or test equipment).
**Customer includes householders, landlords and tenants.
The Benchmark Scheme

Sime is a licensed member of the Benchmark Scheme which aims to improve the standards of installation and commissioning of domestic heating and hot water systems in the UK and to encourage regular servicing to optimise safety, efficiency and performance.
Benchark is managed and promoted by the Heating and Hotwater Industry Council.
For more information visit www.centralheating.co.uk.
Please ensure that the installer has fully completed the Benchmark Checklist in the use and maintenance section of the installation instructions supplied with the product and that you have signed it to say that you have received a full and clear explanation of its operation.
The installer is legally required to complete a commissioning checklist as a means of complying with the appropriate Building Regulations (England and Wales).
All installations must be notified to Local Area Building Control either directly or through a Competent Persons Scheme.
A Building Regulations Compliance Certificate will then be issued to the customer who should, on receipt, write the Notification Number on the Benchmark Checklist.
This product should be serviced regularly to optimise its safety, efficiency and performance.
The service engineer should complete the relevant Service Record on the Benchmark Checklist after each service.
The Benchmark Checklist may be required in the event of any warranty work and as supporting documentation relating to home improvements in the optional documents section of the Home Information Pack.

Important Information
IT IS A STATUTORY REQUIREMENT THAT ALL GAS APPLIANCES ARE INSTALLED BY COMPETENT PERSONS, IN ACCORDANCE WITH THE GAS SAFETY (INSTALLATION AND USE) REGULATIONS (CURRENT EDITION). The manufacturer’s instructions must not be taken as overriding any statutory requirements, and failure to comply with these regulations may lead to prosecution.

No modifications to the appliance should be made unless they are fully approved by the manufacturer.

GAS LEAKS: DO NOT OPERATE ANY ELECTRICAL SWITCH, OR USE A NAKED FLAME. TURN OFF THE GAS SUPPLY AND VENTILATE THE AREA BY OPENING DOORS AND WINDOWS CONTACT THE GAS EMERGENCY SERVICE ON 0800111999.

Please refer to commissioning instructions for filling in the checklist at the back of this installation guide.
Note: All Gas Safe registered installers carry a ID Card.
You can check your installer is Gas Safe Registered by calling 0800 408 5577

SIME COMBINATION BOILERS
Installer checklist

Please remember to carry out the following checks after installation. This will achieve complete customer satisfaction, and avoid unnecessary service calls. A charge will be made for a service visit where the fault is not due to a manufacturing defect.

- Has a correct by-pass been fitted and adjusted?
- Has the system and boiler been flushed?
- Is the system and boiler full of water, and the correct pressure showing on the pressure gauge?
- Is the Auto Air Vent open?

- Has the pump been rotated manually?
- Is the gas supply working pressure correct?
- Is the boiler wired correctly? [See installation manual].
- Has the D.H.W. flow rate been set to the customer requirements?
- Has the customer been fully advised on the correct use of the boiler, system and controls?
- Has the Benchmark Checklist in the use and maintenance section of this manual, been completed?
SAFETY WARNINGS AND REGULATIONS

WARNINGS

– After having unpacked the boiler ensure that it is undamaged and complete including the valve pack, hanging bracket and template.

– The appliance must be used as intended. Sime Ltd declines all responsible for any injury or damage to persons, animals, or property as a result of improper installation, adjustment, maintenance or use.

– In the event of water leaks, disconnect the appliance from the mains power supply, close the water mains and seek help from a qualified engineer.

– Periodically check that the operating pressure of the water heating system when cold is 1-1.2 bar. If required, increase the pressure or seek help from a qualified engineer.

– If the appliance is not used for a long period of time, the following operations must be carried out:
 - set the main isolation switch to "OFF";
 - close the gas and water valves for the water heating system.

– To ensure continued efficient operation of the appliance it is recommended that it is serviced regularly, at least once a year. This is also a condition of the boiler warranty.

– It is the law that any service or repair is carried out by a Gas Safe Registered engineer.

– Services must be recorded in the maintenance section of this installation guide.

WARNINGS

– This manual is an integral part of the appliance. It must therefore be kept for future reference and must always accompany the appliance.

– Installation and maintenance of this appliance must be carried out by a qualified company or by a professionally qualified technician in accordance with the instructions contained in the manual. Once the work is complete, the company or technician will issue a declaration of conformity with national and local technical standards and legislation in force in the country where the appliance will be used.
RESTRICTIONS

DO NOT

- To allow children under the age of 8 to use the appliance. The appliance can be used by children no younger than 8 years old, by people with physical or cognitive disabilities, and by people lacking experience or the necessary knowledge, provided that they are supervised or have been instructed on how to use the appliance safely and that they understand the risks associated with it.

- To allow children to play with the appliance.

- To allow unsupervised children to perform user maintenance and cleaning.

- Do not use electrical devices or appliances such as switches, electrical appliances etc if you can smell gas. If this should happen:
 - open the doors and windows to ventilate the room;
 - turn the gas off at the meter;
 - call the emergency service 0800 111999.

- Do not touch the appliance with bare feet or with any wet part of the body.

- Do not carry out any repair, maintenance or cleaning operation before having disconnected the appliance from the mains power by setting the main switch to “OFF”, and closing the gas supply.

- Do not modify the safety or adjustment devices without authorization and instructions from the manufacturer.

DO NOT

- Do not block the condensate drain.

- Do not pull, detach or twist the electrical cables coming out of the appliance even if the appliance is disconnected from the mains power supply.

- Do not expose the boiler to atmospheric agents. These boilers can also be installed in partially covered areas, as per EN 15502, with a maximum ambient temperature of 60 °C and a minimum ambient temperature of -5 °C. It is generally advisable to install the boilers below weathered roofs, on the balcony or in a protected niche, to protect them from exposure to weathering agents (rain, hail and snow). All boilers provide a standard antifreeze function.

- Do not block or reduce the size of the ventilation openings of the room where the appliance is installed, if present.

- Remove the mains power and gas supply from the appliance if the external temperature could fall below ZERO (risk of freezing).

- Do not leave containers with flammable substances in the room where the appliance is installed.

- Do not dispose of the packaging material irresponsibly as it could be dangerous. Packaging must be disposed of as specified by the legislation in force in the country where the appliance will be used.
RANGE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CODE</th>
<th>GAS COUNCIL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murelle Advanced HE 30 MkII</td>
<td>8114225</td>
<td>47-283-82</td>
</tr>
<tr>
<td>Murelle Advanced HE 40 MkII</td>
<td>8114227</td>
<td>47-283-83</td>
</tr>
</tbody>
</table>

COMPLIANCE

Our company declares that *Murelle Advanced HE MkII* boilers comply with the following directives:
- Gas Appliances EU Regulation 2016/426
- Boiler Efficiency Directive 92/42/EEC
- Low Voltage Directive 2014/35/UUE
- Electromagnetic Compatibility Directive 2014/30/EU
- Ecodesign Directive 2009/125/EC
- Regulation (UE) N. 811/2013 - 813/2013
- Regulation (EU) No. 2017/1369

Please refer to the technical data plate for the serial number and year of manufacture.

SYMBOLS

- **WARNING**
 To indicate actions which, if not carried out correctly, can result in injury of a general nature or may damage or cause the appliance to malfunction; these actions therefore require particular caution and adequate preparation.

- **ELECTRICAL HAZARD**
 To indicate actions which, if not carried out correctly, could lead to injury of an electrical nature; these actions therefore require particular caution and adequate preparation.

- **DO NOT**
 To indicate actions which MUST NOT BE carried out.

- **CAUTION**
 To indicate particularly important and useful information.

MANUAL STRUCTURE

This manual is organized as follows.

USER INSTRUCTIONS

TABLE OF CONTENTS 9

DESCRIPTION OF THE APPLIANCE

TABLE OF CONTENTS 15

INSTALLATION AND SERVICING INSTRUCTIONS

TABLE OF CONTENTS 25
USER INSTRUCTIONS

TABLE OF CONTENTS

1 OPERATING THE MURELLE ADVANCED HE MkII 10
1.1 Control panel .. 10
1.2 Preliminary checks .. 11
1.3 Ignition ... 11
1.4 Adjusting the delivery temperature 11
1.5 Adjusting the domestic hot water temperature 11
1.6 Fault / malfunction codes 12

2 SHUTDOWN 12
2.1 Temporary shutdown .. 12
2.2 Shutting down for long periods 12

3 MAINTENANCE 13
3.1 Servicing .. 13
3.2 External cleaning .. 13
3.2.1 Cleaning the case 13

4 DISPOSAL 13
4.1 Disposal of the equipment (European Directive 2012/19/EU) .. 13

VERY IMPORTANT!

PLEASE MAKE SURE YOUR COMMISSIONING CHECKLIST AND THE SERVICE INTERVAL RECORDS ENCLOSED ARE FILLED IN CORRECTLY.
ALL GAS SAFE REGISTERED INSTALLERS CARRY A GAS SAFE ID CARD.
BOTH SHOULD BE RECORDED IN YOUR COMMISSIONING CHECKLIST AND A SERVICE INTERVAL RECORDS.
YOU CAN CHECK YOUR INSTALLER IS GAS SAFE REGISTERED BY CALLING ON 0800 408 5500 OR ALTERNATIVELY WWW.GASSAFEREGISTER.CO.UK
1 OPERATING THE MURELLE ADVANCED HE MkII

1.1 Control panel

1 FUNCTIONAL BUTTONS

Press for more than one second and release to step through the operating modes (Stand-by – Summer – Winter). Also use this key to reset a resettable lockout.

During normal operation, pressing the button displays the domestic hot water set point which can be between 10 and 60°C. In “parameter setting”, the engineer can scroll through the parameter index (decreasing) by pressing this button.

During normal operation, pressing this button allows the user to reduce the heating or DHW set point on the basis of the selection made previously. In “parameter setting/display”, the engineer can modify the parameter setting or value (decreasing) by pressing this button.

During normal operation, pressing this button allows the user to increase the heating or DHW set point on the basis of the selection made previously. In “parameter setting/display”, the engineer can modify the parameter setting or value (increasing) by pressing this button.

Programming connector cover plug.

NOTE: pressing any one of these buttons for more than 30 seconds generates a fault on the display without preventing boiler operation. The warning disappears when the button is released.

2 DISPLAY

“SUMMER”. This symbol appears when the boiler is operating in “Summer” mode or if only the domestic hot water mode is enabled via the remote control. If the symbols ° and ° are flashing, this indicates that the chimney sweep function is active.

“WINTER”. This symbol appears when the boiler is operating in “Winter” mode or if both the domestic hot water and heating modes are enabled via the remote control. With the remote control, if no operating modes have been enabled both symbols ° and ° will be off.

“RESET REQUIRED”. The message indicates that after having corrected the problem, normal boiler operation can be restored by pressing the button °.

“DOMESTIC HOT water”. This symbol is present during a DHW request or during the “chimney sweep function” It flashes during the selection of the domestic hot water set point.

“HEATING”. This symbol lights up during heating operation or during the “chimney sweep function” It flashes during the selection of the heating set point.

“LOCKOUT DUE TO NO FLAME”.

“FLAME LIT”.

“POWER LEVEL”. This indicates the power level at which the boiler is operating.

“PARAMETER”. This indicates when the engineer is in parameter setting/display, or “info” or “counter”, or in “activated alarms” (history).

“ALARM”. This indicates that a fault has occurred. The number specifies the cause which generated the alarm.

“CHIMNEY SWEEP”. This indicates that the “chimney sweep function” has been activated.

“HEATING SYSTEM PRESSURE”. Display of heating system pressure.

“ECO”, “ALTERNATIVE ENERGY SOURCES. Where active, it indicates that there is a solar system available.

“MAINTENANCE REQUEST”. If active, it shows it is time to perform maintenance on the boiler.
1.2 Preliminary checks

WARNING
- Should it be necessary to access the areas in the bottom part of the appliance, make sure that the system components and pipes are not hot (risk of burning).
- Before replenishing the heating system, put on protective gloves.

Commissioning of the Murelle Advanced HE MkII boiler must be carried out by professionally qualified personnel after which the boiler can operate automatically. It may however be necessary for the User to start the appliance autonomously without involving a technician: for example, after a holiday. First of all, check that the gas isolation and water system valves are open.

1.3 Ignition

After having carried out the preliminary checks, proceed as follows:
- set the main system switch to “ON”
- check that the operating mode on the display is “Stand-by” and if necessary select it by pressing the button once or twice
- check that the pressure in the heating system, when cold, is 1-1.2 bar. If the pressure is less than this, use the external filling device to repressurise the system to 1-1.2 bar
- ensure that the filling device is turned off after use.

- select the “SUMMER” operating mode by pressing and holding the button for at least 1 second. The delivery temperature detected at that moment will appear on the display

- open one or more than one hot water tap. The symbol should appear on the display and the boiler will ignite and stay alight until the tap is turned off.

Once the boiler has been operated in “SUMMER mode” “WINTER mode” can be selected by pressing and holding the button for at least 1 second. The delivery water temperature detected at that moment will appear on the display. Ensure that any timers and room thermostats are in the on position. The symbol will appear on the display and the boiler will ignite.

1.4 Adjusting the delivery temperature

The temperature of the heating water can be adjusted by pressing the button followed by the buttons or on the control panel until the desired temperature is reached. The temperature can be set to between 20 and 80°C.

1.5 Adjusting the domestic hot water temperature

The temperature of the domestic hot water can be adjusted by pressing the button followed by the buttons or on the control panel, until the desired temperature is reached. The temperature can be set to between 10 and 60°C.
1.6 Fault / malfunction codes

If a fault/malfunction is detected during boiler operation, the message “ALL” will appear on the display followed by the fault code.

If you see alarm “02” (low water pressure in the system):
- check that the pressure in the heating system, when cold, is 1-1.2 bar. If the pressure is less than this, use the external filing device to repressurise the system to 1-1.2 bar
- ensure that the filling device is turned off after use.

If you see alarm “06” (no flame detected) and “07” (safety thermostat intervention):
- press and hold the button for more than 3 seconds and check whether normal operating conditions are restored.
- if this operation is not successful, **ONLY ONE MORE ATTEMPT** can be made, therefore:
 - close the gas cock
 - isolate the power supply
 - contact the Qualified Technical Personnel.

2 SHUTDOWN

2.1 Temporary shutdown

To temporarily interrupt the boiler operation, press and hold the button for at least one second, once if in “WINTER mode” or twice if in “SUMMER mode”. “- -” will appear on the display; the boiler will be in STAND-BY.

The boiler anti freeze function will be enabled.

2.2 Shutting down for long periods

If the boiler is to be left unused for a long period, the following operations need to be carried out:
- press and hold the button for at least 1 second, once if in “WINTER mode” or twice if in “SUMMER mode” to put the boiler into stand-by “- -” will appear on the display
- isolate the power supply
- isolate the gas cock
- close the heating and domestic hot water isolation valves
- drain the heating and domestic hot water system if there is the risk of freezing.

CAUTION

Contact the Qualified Technical Personnel if the procedure described above cannot be easily carried out.
3 MAINTENANCE

3.1 Servicing
As a condition of the warranty and to ensure correct operation and efficiency, it is important that the boiler is serviced every 12 months, within 30 days of the anniversary of the installation date ensure the required information is recorded in the Gas Boiler System Service Interval Record [Benchmark].

CAUTION
Maintenance interventions must ONLY be carried out by professionally qualified personnel who will follow the indications provided in the INSTALLATION AND MAINTENANCE MANUAL.

3.2 External cleaning

WARNING
– Should it be necessary to access the areas in the bottom part of the appliance, make sure that the system components and pipes are not hot (risk of burning).
– Before performing any maintenance, put on protective gloves.

3.2.1 Cleaning the case
When cleaning the cladding, use a cloth dampened with soap and water or alcohol for stubborn marks.

DO NOT
Do not use abrasive products.

4 DISPOSAL

4.1 Disposal of the equipment [European Directive 2012/19/EU]
Boilers and electrical and electronic appliances from private households must not be disposed of as unsorted municipal waste at the end of their life. Instead, they must be taken to specific return and collection facilities, as per Directive 2012/19/EU and Italian Legislative Decree 49/2014. For more information on authorised collection facilities, please contact your local council or retailer. Individual countries may also define specific rules on how to handle electrical and electronic waste. Before disposing of your appliance, please check the rules in force in your country.

DO NOT
Dispose of the product with urban waste.
TABLE OF CONTENTS

5 DESCRIPTION OF THE APPLIANCE 16
5.1 Characteristics 16
5.2 Check and safety devices 16
5.3 Identification 16
5.3.1 Technical Data Plate 17
5.4 Structure 18
5.5 Technical features 19
5.6 Main water circuit 20
5.7 Sensors 20
5.8 Expansion vessel 21
5.9 Circulation pump 21
5.10 Control panel 22
5.11 Wiring diagram 23
5 DESCRIPTION OF THE APPLIANCE

5.1 Characteristics
Murelle Advanced HE MkII are condensing wall mounted boilers which Sime Ltd has produced for installation into domestic properties for heating and hot water production. The main design choices made by Sime Ltd for the Murelle Advanced HE MkII boilers are:
- the total pre-mix microflame burner combined with a steel heat exchanger for heating and a rapid heat exchanger for DHW
- room sealed, Type C appliance. Suitable for use on sealed heating systems
- the command and control microprocessor electronic board provides efficient management of both heating and hot water production. It can also be connected to a external sensor. If connected to an external sensor, the boiler temperature varies on the basis of the external temperature according to a selected optimal climatic curve providing significant energy and economic savings.

Other special features of the Murelle Advanced HE MkII boilers are:
- the anti-freeze function which activates automatically if the temperature of the water inside the boiler falls below the threshold of the value set at parameter “PAR 10” and, if there is an external sensor, if the external temperature falls below the threshold of the value set at parameter “PAR 11”
- anti jamming function of the pump and diverter valve, this activates automatically every 24 hours if no request for heat has been made
- the chimney sweep function lasts 15 minutes and makes the job of the qualified technician easier when measuring the parameters and combustion efficiency
- domestic hot water comfort function which allows the time necessary for the hot water to become available to be reduced and ensures that the temperature is stable
- screen display of the operating and self-diagnostic parameters with error code display when the fault occurs. This makes repair interventions easier and allows appliance operation to be restored correctly.

5.2 Check and safety devices
The Murelle Advanced HE MkII boilers are equipped with the following check and safety devices:
- thermal safety thermostat 100°C
- 3 bar relief valve
- heating water pressure transducer
- delivery sensor (SM)
- DHW sensor (SS)
- exhaust sensor (SF).

DO NOT
Do not commission or operate the appliance with safety devices which do not work or which have been tampered with.

WARNING
Safety device may only be replaced by professional qualified personnel using Sime Ltd original spare parts.

5.3 Identification
The Murelle Advanced HE MkII boilers can be identified by means of:
1 **Packaging label:** this is located on the outside of the packaging and provides a code, the serial number of the boiler and the bar code
2 **Energy Efficiency Label:** this is positioned on the outside of the packaging to notify the User of the level of energy savings and reduced environmental pollution produced by the appliance
3 **Technical Data Plate:** this is located inside the front panel of the boiler and provides the technical data, appliance performance information and any other information required by law in the country where the appliance will be used.
4 **Sticker of product identification**
5.3.1 Technical Data Plate

CAUTION
Tampering with, removing or failing to display the identification plate or carrying out any other operation which does not allow safe identification of the product or which may hinder installation and maintenance operations.
1 Heat exchanger bleed point
2 Heat exchanger
3 Combustion chamber door
4 Air/gas duct
5 Flame viewing window
6 Ignition/detection electrode
7 Return sensor (SR)
8 Safety thermostat (TS)
9 Delivery sensor (SM)
10 Fan
11 Condensate siphon
12 Diverter valve
13 Domestic hot water sensor (SS)
14 Control panel
15 Domestic hot water heat exchanger
16 Gas valve
17 Domestic hot water filter
18 System relief valve
19 Boiler drain
20 Pump
21 Water pressure transducer
22 Automatic bleed valve
23 Air-gas mixer
24 Expansion vessel
25 Air inlet pipe
26 Air-smoke chamber
27 Exhaust sensor (SF)
28 Air inlet
29 Exhaust outlet

Fig. 7
Technical features

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Murelle Advanced HE MkII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of intended installation</td>
<td>GB</td>
</tr>
<tr>
<td>Fuel</td>
<td>G20 / G31</td>
</tr>
<tr>
<td>PIN number</td>
<td>1312CP5936</td>
</tr>
<tr>
<td>Category</td>
<td>I12H3P</td>
</tr>
<tr>
<td>Type</td>
<td>C13 - C33</td>
</tr>
<tr>
<td>Class NOx (*)</td>
<td>6 (< 56 mg/kWh)</td>
</tr>
</tbody>
</table>

CERTIFICATIONS

<table>
<thead>
<tr>
<th>HEATING PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT INPUT (**)</td>
</tr>
<tr>
<td>Nominal flow [Qn max] kW</td>
</tr>
<tr>
<td>Minimum flow [Qn min] kW</td>
</tr>
<tr>
<td>HEAT OUTPUT</td>
</tr>
<tr>
<td>Nominal [80-60°C] [Pn max] kW</td>
</tr>
<tr>
<td>Nominal [50-30°C] [Pn max] kW</td>
</tr>
<tr>
<td>Minimum G20 [80-60°C] [Pn min] kW</td>
</tr>
<tr>
<td>Minimum G20 [50-30°C] [Pn min] kW</td>
</tr>
<tr>
<td>Minimum G31 [80-60°C] [Pn min] kW</td>
</tr>
<tr>
<td>Minimum G31 [50-30°C] [Pn min] kW</td>
</tr>
</tbody>
</table>

EFFICIENCY

Max useful efficiency (80-60°C) %	98.3	98.6
Min useful efficiency (80-60°C) %	97.9	98.6
Max useful efficiency (50-30°C) %	107.1	107.1
Min useful efficiency (50-30°C) %	106.3	107.1
Useful efficiency at 30% of load (40-30°C) %	108.5	108.5
Losses after shutdown at 50°C W	88	92

DOMESTIC HOT WATER PERFORMANCE

Nominal heat input [Qn max] kW	28	40
Minimum heat input [Qn min] kW	4.8	7
Specific D.H.W. flow rate at 30°C (EN 13203) l/min	12.9	19.4
Continuous D.H.W. flow rate at 25°C/35°C l/min	16.1 / 11.5	22.9 / 16.4
Minimum D.H.W. flow rate l/min	2	2
Max [PMW] / Min pressure bar	6 / 0.5	6 / 0.7
kPa	600 / 50	500 / 70

ENERGY PERFORMANCE

Heating seasonal energy efficiency class	A	A
Heating seasonal energy efficiency %	93	93
Sound power dB(A)	56	54

DYNAMIC HOT WATER

Domestic hot water energy efficiency class	A	B
Domestic hot water energy efficiency %	84	83
Stated domestic hot water profile load XL	XXL	

ELECTRICAL SPECIFICATIONS

Power supply voltage V	230	
Frequency Hz	50	
Absorbed electrical power Qn max W	85	111
Absorbed electrical power Qn min W	52	58
Absorbed electrical power in stand-by W	3	3
Electrical protection degree	IP X5D	

COMBUSTION DATA

Smoke temperature at Max/Min flow [80-60°C] °C	89 / 71	75 / 62
Smoke temperature at Max/Min flow [50-30°C] °C	71 / 51	54 / 39
Smoke flow Max/Min g/s	13.1 / 2.2	18.6 / 3.3
CO2 at Max/Min flow rate G(20) %	9.0 / 9.0	9.0 / 9.0
CO2 at Max/Min flow rate G(31) %	10.0 / 10.0	10.0 / 10.0
NOx measured mg/kWh	37	55

NOZZLES - GAS

Number of nozzles No.	1	
Nozzle diameter (G20-G31) mm	5.3	
Gas consumption at Max/Min flow rate G(20) m³/h	2.96 / 0.50	4.23 / 0.74
Gas consumption at Max/Min flow rate G(31) Kg/h	2.17 / 0.37	3.10 / 0.74
Gas supply pressure (G20/G31) mbar	19 / 36	19 / 36
kPa	1.9 / 3.6	1.9 / 3.6

(*) NOx class according to UNI EN 15502-1:2015
(**) Heat input calculated using the lower heat output [Hi]
DESCRIPTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Murelle Advanced HE MkII</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURE - PRESSURE</td>
<td></td>
</tr>
<tr>
<td>Max operating temperature ([T_{\text{max}}])</td>
<td>°C</td>
</tr>
<tr>
<td>Heating adjustment range</td>
<td>°C</td>
</tr>
<tr>
<td>Domestic hot water adjustment range</td>
<td>°C</td>
</tr>
<tr>
<td>Max operating pressure ([PMS])</td>
<td>bar</td>
</tr>
<tr>
<td>Water content in boiler</td>
<td>l</td>
</tr>
</tbody>
</table>

Lower Heat Output \([H_i]\)

- **G20 Hi.** 9.45 kW/m² (15°C, 1013 mbar) - **G31 Hi.** 12.87 kW/kg (15°C, 1013 mbar)

5.6 Main water circuit

![Diagram of main water circuit](image_url)

KEY:
- M System flow
- R System return
- U Domestic hot water outlet
- E Domestic hot water inlet
- S Safety valve outlet
- G Gas supply
- Sc Condensate outlet

- 1 Condensing heat exchanger
- 2 Combustion chamber
- 3 Fan
- 4 Return sensor [SR]
- 5 Thermal safety thermostat [TS]
- 6 Delivery sensor [SM]
- 7 Domestic hot water heat exchanger
- 8 Pressure transducer
- 9 Automatic bleed valve

10 Pump
11 System expansion vessel
12 Diverter valve
13 Automatic by-pass
14 Domestic hot water sensor [SS]
15 Gas valve
16 Domestic hot water flow meter
17 Domestic hot water filter
18 Boiler drain
19 System relief valve
20 Condensate siphon outlet
21 System flow cock
22 Gas cock
23 Domestic hot water inlet cock
24 System return cock

5.7 Sensors

The sensors installed have the following characteristics:
- Dual sensor (thermal safety/output) NTC R25°C; 10kΩ
- Domestic hot water sensor NTC R25°C; 10kΩ
- External sensor NTC R25°C; 10kΩ

Correspondence of Temperature Detected/Resistance

Examples of reading:

- **TR=75°C → R=1925Ω**
- **TR=80°C → R=1669Ω**

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>27279</td>
</tr>
<tr>
<td>1°C</td>
<td>26044</td>
</tr>
<tr>
<td>2°C</td>
<td>24004</td>
</tr>
<tr>
<td>3°C</td>
<td>23014</td>
</tr>
<tr>
<td>4°C</td>
<td>22069</td>
</tr>
<tr>
<td>5°C</td>
<td>21168</td>
</tr>
<tr>
<td>6°C</td>
<td>20309</td>
</tr>
<tr>
<td>7°C</td>
<td>19489</td>
</tr>
<tr>
<td>8°C</td>
<td>18706</td>
</tr>
<tr>
<td>10°C</td>
<td>17959</td>
</tr>
<tr>
<td>11°C</td>
<td>17265</td>
</tr>
<tr>
<td>12°C</td>
<td>16692</td>
</tr>
<tr>
<td>13°C</td>
<td>16147</td>
</tr>
<tr>
<td>14°C</td>
<td>15634</td>
</tr>
<tr>
<td>15°C</td>
<td>15162</td>
</tr>
<tr>
<td>16°C</td>
<td>14722</td>
</tr>
<tr>
<td>17°C</td>
<td>14300</td>
</tr>
<tr>
<td>18°C</td>
<td>13901</td>
</tr>
<tr>
<td>19°C</td>
<td>13524</td>
</tr>
<tr>
<td>20°C</td>
<td>13165</td>
</tr>
<tr>
<td>21°C</td>
<td>12829</td>
</tr>
<tr>
<td>22°C</td>
<td>12515</td>
</tr>
<tr>
<td>23°C</td>
<td>12224</td>
</tr>
<tr>
<td>24°C</td>
<td>11956</td>
</tr>
<tr>
<td>25°C</td>
<td>11708</td>
</tr>
<tr>
<td>26°C</td>
<td>11484</td>
</tr>
<tr>
<td>27°C</td>
<td>11282</td>
</tr>
<tr>
<td>28°C</td>
<td>11092</td>
</tr>
<tr>
<td>29°C</td>
<td>10913</td>
</tr>
<tr>
<td>30°C</td>
<td>10746</td>
</tr>
<tr>
<td>31°C</td>
<td>10582</td>
</tr>
<tr>
<td>32°C</td>
<td>10428</td>
</tr>
<tr>
<td>33°C</td>
<td>10287</td>
</tr>
<tr>
<td>34°C</td>
<td>10156</td>
</tr>
<tr>
<td>35°C</td>
<td>10036</td>
</tr>
<tr>
<td>36°C</td>
<td>9926</td>
</tr>
<tr>
<td>37°C</td>
<td>9826</td>
</tr>
<tr>
<td>38°C</td>
<td>9733</td>
</tr>
<tr>
<td>39°C</td>
<td>9648</td>
</tr>
<tr>
<td>40°C</td>
<td>9568</td>
</tr>
<tr>
<td>41°C</td>
<td>9493</td>
</tr>
<tr>
<td>42°C</td>
<td>9421</td>
</tr>
<tr>
<td>43°C</td>
<td>9353</td>
</tr>
<tr>
<td>44°C</td>
<td>9286</td>
</tr>
<tr>
<td>45°C</td>
<td>9221</td>
</tr>
<tr>
<td>46°C</td>
<td>9158</td>
</tr>
<tr>
<td>47°C</td>
<td>9096</td>
</tr>
<tr>
<td>48°C</td>
<td>9036</td>
</tr>
<tr>
<td>49°C</td>
<td>8978</td>
</tr>
<tr>
<td>50°C</td>
<td>8921</td>
</tr>
<tr>
<td>51°C</td>
<td>8865</td>
</tr>
<tr>
<td>52°C</td>
<td>8811</td>
</tr>
<tr>
<td>53°C</td>
<td>8758</td>
</tr>
<tr>
<td>54°C</td>
<td>8706</td>
</tr>
<tr>
<td>55°C</td>
<td>8656</td>
</tr>
<tr>
<td>56°C</td>
<td>8607</td>
</tr>
<tr>
<td>57°C</td>
<td>8558</td>
</tr>
<tr>
<td>58°C</td>
<td>8510</td>
</tr>
<tr>
<td>59°C</td>
<td>8463</td>
</tr>
<tr>
<td>60°C</td>
<td>8416</td>
</tr>
<tr>
<td>61°C</td>
<td>8370</td>
</tr>
<tr>
<td>62°C</td>
<td>8325</td>
</tr>
<tr>
<td>63°C</td>
<td>8281</td>
</tr>
<tr>
<td>64°C</td>
<td>8237</td>
</tr>
<tr>
<td>65°C</td>
<td>8194</td>
</tr>
<tr>
<td>66°C</td>
<td>8152</td>
</tr>
<tr>
<td>67°C</td>
<td>8110</td>
</tr>
<tr>
<td>68°C</td>
<td>8070</td>
</tr>
<tr>
<td>69°C</td>
<td>8030</td>
</tr>
<tr>
<td>70°C</td>
<td>7992</td>
</tr>
<tr>
<td>71°C</td>
<td>7954</td>
</tr>
<tr>
<td>72°C</td>
<td>7917</td>
</tr>
<tr>
<td>73°C</td>
<td>7880</td>
</tr>
<tr>
<td>74°C</td>
<td>7844</td>
</tr>
<tr>
<td>75°C</td>
<td>7808</td>
</tr>
<tr>
<td>76°C</td>
<td>7773</td>
</tr>
<tr>
<td>77°C</td>
<td>7739</td>
</tr>
<tr>
<td>78°C</td>
<td>7706</td>
</tr>
<tr>
<td>79°C</td>
<td>7673</td>
</tr>
<tr>
<td>80°C</td>
<td>7642</td>
</tr>
<tr>
<td>81°C</td>
<td>7611</td>
</tr>
<tr>
<td>82°C</td>
<td>7581</td>
</tr>
<tr>
<td>83°C</td>
<td>7552</td>
</tr>
<tr>
<td>84°C</td>
<td>7523</td>
</tr>
<tr>
<td>85°C</td>
<td>7495</td>
</tr>
<tr>
<td>86°C</td>
<td>7467</td>
</tr>
<tr>
<td>87°C</td>
<td>7440</td>
</tr>
<tr>
<td>88°C</td>
<td>7413</td>
</tr>
<tr>
<td>89°C</td>
<td>7388</td>
</tr>
<tr>
<td>90°C</td>
<td>7363</td>
</tr>
<tr>
<td>91°C</td>
<td>7339</td>
</tr>
<tr>
<td>92°C</td>
<td>7316</td>
</tr>
<tr>
<td>93°C</td>
<td>7293</td>
</tr>
<tr>
<td>94°C</td>
<td>7271</td>
</tr>
<tr>
<td>95°C</td>
<td>7249</td>
</tr>
<tr>
<td>96°C</td>
<td>7227</td>
</tr>
<tr>
<td>97°C</td>
<td>7206</td>
</tr>
</tbody>
</table>

Resistance R (Ω)

- **10°C → 22069**
- **11°C → 19250**
- **12°C → 16692**
- **13°C → 14722**
- **14°C → 13524**
- **15°C → 12224**
- **16°C → 11092**
- **17°C → 9926**
- **18°C → 8978**
- **19°C → 8030**
- **20°C → 7152**
- **21°C → 6370**
- **22°C → 5698**
- **23°C → 5126**
- **24°C → 4654**
- **25°C → 4282**
- **26°C → 3910**
- **27°C → 3538**
- **28°C → 3166**
- **29°C → 2794**
- **30°C → 2422**
- **31°C → 2050**
- **32°C → 1678**
- **33°C → 1306**
- **34°C → 934**
- **35°C → 562**
- **36°C → 190**
- **37°C → 52**
- **38°C → 4**
5.8 Expansion vessel
The expansion vessel installed on the boilers has the following characteristics:

<table>
<thead>
<tr>
<th>Description</th>
<th>U/M</th>
<th>Murelle Advanced HE MkII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total capacity</td>
<td>l</td>
<td>9,0 10,0</td>
</tr>
<tr>
<td>Prefilling pressure</td>
<td>kPa</td>
<td>100</td>
</tr>
<tr>
<td>Useful capacity</td>
<td>bar</td>
<td>1,0</td>
</tr>
<tr>
<td>Maximum system content [*]</td>
<td>l</td>
<td>124 140</td>
</tr>
</tbody>
</table>

(* Conditions of:
Average operating temperature 70°C (with high temperature system 80/60°C)
Start temperature at system filling 10°C.

CAUTION
- For systems with water content exceeding the maximum system content (as indicated in the table) an additional expansion vessel must be fitted.
- The difference in height between the relief valve and the highest point of the system cannot exceed 6 metres. If the difference is greater than 6 metres, increase the prefilling pressure of the expansion vessel and the system when cold by 0.1 bar for each meter increase.

5.9 Circulation pump
The flow-head performance curve available for the heating system is shown in the graph below.

CAUTION
The appliance is equipped with a by-pass which ensures water circulation in the boiler when thermostatic valves are used in the system. The heating system design should incorporate a room thermostat. Thermostatic radiator valves fitted to all radiators except the room where the room thermostat is fitted. Properties with floor areas exceeding 150 square metres should be zoned.
5.10 Control panel

1 FUNCTIONAL BUTTONS

Press for more than one second and release to step through the operating modes (Stand-by – Summer – Winter). Also use this key to reset a resettable lockout.

During normal operation, pressing the button displays the domestic hot water set point which can be between 10 and 60°C. In "parameter setting", the engineer can scroll through the parameter index [decreasing] by pressing this button.

During normal operation, pressing this button allows the user to reduce the heating or DHW set point on the basis of the selection made previously. In "parameter setting/display", the engineer can modify the parameter setting or value [decreasing] by pressing this button.

During normal operation, pressing this button allows the user to increase the heating or DHW set point on the basis of the selection made previously. In "parameter setting/display", the engineer can modify the parameter setting or value [increasing] by pressing this button.

Programming connector cover plug.

NOTE: pressing any one of these buttons for more than 30 seconds generates a fault on the display without preventing boiler operation. The warning disappears when the button is released.

2 DISPLAY

"SUMMER". This symbol appears when the boiler is operating in "Summer" mode or if only the domestic hot water mode is enabled via the remote control. If the symbols ⏳ and 🗽 are flashing, this indicates that the chimney sweep function is active.

"WINTER". This symbol appears when the boiler is operating in "Winter" mode or if both the domestic hot water and heating modes are enabled via the remote control. With the remote control, if no operating modes have been enabled both symbols ⏳ and 🗽 will be off.

"RESET REQUIRED". The message indicates that after having corrected the problem, normal boiler operation can be restored by pressing the button 🧨.

"DOMESTIC HOT WATER". This symbol is present during a DHW request or during the "chimney sweep function". It flashes during the selection of the domestic hot water set point.

"HEATING". This symbol lights up during heating operation or during the "chimney sweep function". It flashes during the selection of the heating set point.

"LOCKOUT" DUE TO NO FLAME.

"FLAME LIT".

"POWER LEVEL". This indicates the power level at which the boiler is operating.

"PARAMETER". This indicates when the engineer is in parameter setting/display, or "info" or "counter", or in "activated alarms" (history).

"ALARM". This indicates that a fault has occurred. The number specifies the cause which generated the alarm.

"CHIMNEY SWEEP". This indicates that the "chimney sweep function" has been activated.

"HEATING SYSTEM PRESSURE". Display of heating system pressure.

"ECO", ALTERNATIVE ENERGY SOURCES. Where active, it indicates that there is a solar system available.

"MAINTENANCE REQUEST". If active, it shows it is time to perform maintenance on the boiler.
5.11 Wiring diagram

CAUTION
Installer must:
- Connect the boiler to a 230v-50Hz single phase power supply through a fused mains switch, with at least 3mm spacing between contacts, fused at 3amps which ensures complete cut-off in overvoltage category III conditions (i.e. where there is at least 3 mm between the open contacts).
- Respect the connections L [Live] - N [Neutral].
- Ensure that the special power cable is only replaced with a cable ordered as a spare part and connected by professionally qualified personnel.

Note: Volt free external controls (TA) are connected to terminals 5 and 6 after removal of the link.

Sime Ltd declines all responsibility for any injury or damage to persons, animals or property as a result of failure to provide adequate earthing of the appliance.

DO NOT
Do not use water pipes for earthing the appliance.
The Benchmark Scheme

Benchmark places responsibilities on both manufacturers and installers. The purpose is to ensure that customers are provided with the correct equipment for their needs, that it is installed, commissioned and serviced in accordance with the manufacturer’s instructions by competent persons and that it meets the requirements of the appropriate Building Regulations.

The Benchmark Checklist can be used to demonstrate compliance with Building Regulations and should be provided to the customer for future reference.

Installers are required to carry out installation, commissioning and servicing work in accordance with the Benchmark Code of Practice which is available from the Heating and Hotwater Industry Council who manage and promote the Scheme.
Installer Checklist

Please remember to carry out the following checks after installation. This will achieve complete customer satisfaction, and avoid unnecessary service calls. A charge will be made for a service visit where the fault is not due to a manufacturing defect.

Has a correct by-pass been fitted and adjusted?
Has the system and boiler been flushed?
Is the system and boiler full of water, and the correct pressure showing on the pressure gauge?
Is the Auto Air Vent open?
Has the pump been rotated manually?
Is the gas supply working pressure correct?
Is the boiler wired correctly? (See installation manual).
Has the D.H.W. flow rate been set to the customer requirements?
Has the customer been fully advised on the correct use of the boiler, system and controls?
Has the Benchmark Checklist in the use and maintenance section of this manual, been completed?

TABLE OF CONTENTS

6 INSTALLATION
6.1 Receiving the product 26
6.2 Dimensions and weight 26
6.3 Handling .. 26
6.4 Ventilation requirements 26
6.5 New installation or installation of a replacement appliance ... 27
6.6 Cleaning the system ... 27
6.7 Characteristics of feedwater and system treatment .. 27
6.8 Boiler installation .. 27
6.9 Plumbing connections .. 28
6.9.1 Plumbing accessories (optional) 28
6.10 Condensate outlet/collection 28
6.11 Gas supply .. 28
6.12 Connecting the flue ... 29
6.12.1 Flue Terminal Positions 29
6.12.2 Installation of coaxial flues 60/100mm – 80/125mm .. 30
6.12.3 Installation of separate ducts 80mm 31
6.13 Electrical connections and External controls .. 32
6.13.1 External sensor .. 33
6.13.2 External timers and Room Thermostats 33
6.13.3 EXAMPLE of use of the command/control device on some types of heating systems 33
6.14 Refilling or emptying ... 34
6.14.1 Method of filling a sealed system 34
6.14.2 SYSTEM Filling .. 34
6.14.3 EMPTYING operations 35

7 COMMISSIONING .. 36
7.1 Preliminary operations .. 36
7.2 Before commissioning .. 36
7.2.1 Automatic self-calibrating procedure 36
7.3 Parameter setting and display 37
7.4 List of parameters .. 37
7.5 Display of operating data and counters 39

7.6 Checks ... 40
7.6.1 Chimney sweep function 40
7.7 Domestic hot water comfort function (preheating) 41
7.8 Gas conversion ... 41
7.9 Heating power output adjustment 41

8 MAINTENANCE .. 42
8.1 Servicing ... 42
8.2 External cleaning ... 42
8.2.1 Cleaning the case .. 42
8.3 Burner Inspection ... 42
8.3.1 Burner access .. 42
8.3.2 Cleaning the burner and the combustion chamber 43
8.3.3 Checking the ignition/detection electrode 43
8.3.4 Final operations ... 43
8.4 Checks .. 43
8.4.1 Checking the flue ... 43
8.4.2 Checking the expansion vessel pressure 43
8.4.3 System Inhibiter concentration 43
8.5 Circuit Board Replacement 44
8.6 Malfunction codes and possible solutions 44
8.6.1 Maintenance request 45

9 EXPLODED VIEWS .. 50

10 APPENDIX 1 (GUIDANCE HHIC) 55

11 APPENDIX 2 .. 69

12 PRODUCT DATA SHEET .. 70

13 ANNEX AA.1 ... 71
6 INSTALLATION

CAUTION
The appliance must only be installed by the Sime Ltd Technical Service or by qualified professionals who MUST wear suitable protective safety equipment.

6.1 Receiving the product
Murelle Advanced HE MkII appliances are delivered in a single unit protected by cardboard packaging.

The plastic bag found inside the packaging contains the following:
- Installation, use and maintenance manual
- Paper template for boiler installation
- Bracket for mounting the boiler on the wall
- Certificate of warranty
- Hydrostatic test certificate
- Hanging Bracket
- Connection pack

DO NOT
Do not leave packaging material around or near children since it could be dangerous. Dispose of it as prescribed by legislation in force.

6.2 Dimensions and weight

<table>
<thead>
<tr>
<th>Description</th>
<th>Murelle Advanced HE MkII</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (mm)</td>
<td>30 40</td>
</tr>
<tr>
<td>D (mm)</td>
<td>250 300</td>
</tr>
<tr>
<td>H (mm)</td>
<td>700</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>28.5 32.5</td>
</tr>
</tbody>
</table>

6.3 Handling

Once the packaging has been removed, the appliance is to be handled manually, tilting it slightly, lifting it and applying pressure in the points indicated in the figure.

DO NOT
To grip the appliance casing. Hold the “solid” parts of the appliance such as the base and structural frame.

WARNING
Use suitable tools and personal protection when removing the packaging and when handling the appliance. Observe the maximum weight that can be lifted per person.

6.4 Ventilation requirements

Detailed recommendations for the air supply are given in BS 5440-2. The following note is given for guidance. It is not necessary to have purpose provided air vents in the room or compartment that the appliance is installed.

The minimum temperature of the installation room must NOT be lower than -5 °C.

CAUTION
- Before assembling the appliance, the installer MUST make sure that the wall supports the weight.
- Observe the required clearances (see Fig. 15).
6.5 New installation or installation of a replacement appliance

The boiler must be installed in a fixed location and only by specialized and qualified person in compliance with all instructions contained in this manual. The installation of this boiler must be in accordance with the relevant requirements of the current Gas Safety Installation and use, the local building regulations and I.E.E. wiring regulations. Detailed recommendations for air supply and fluing are given in BS5440.

The following notes are for general guidance: it is not necessary to have a purpose provided air vent in the room or compartment in which the appliance is installed.

CAUTION
It is a condition of the warranty that the boiler is installed in accordance with the instructions in this manual. The boiler must be registered with Gas Safe Register, the Benchmark record must be completed and the boiler is serviced annually and recorded in this manual.

CAUTION
If the domestic water supply is metered or should a water meter be added at a later time, a small expansion vessel should be included in the domestic water pipework.

6.6 Cleaning the system

Before connecting the boiler it is recommended that the system be flushed in accordance to BS 7593, to eliminate any foreign bodies that may be detrimental to the operating efficiency of the appliance.

CAUTION
Failure to flush and add inhibitor to the system may invalidate the warranty.

6.7 Characteristics of feedwater and system treatment

- All recirculatory systems will be subject to corrosion unless an appropriate water treatment is applied. This means that the efficiency of the system will deteriorate as corrosion sludge accumulates within the system, risking damage to pump and valves, boiler noise and circulation problems.
- Before connecting the boiler the associated central heating system must be flushed in accordance with the guidelines given in BS 7593 “Treatment of water in domestic hot water central heating systems”.
- Sime Ltd recommends only the use of FERNOX products for the flushing and final treatment of the system water. This is particularly important in hard water areas. Failure to flush and add inhibitor to the system may invalidate the appliance warranty. Artificially softened water must not be used to fill the heating system. Naturally soft water areas can corrode aluminium heat exchangers. Adding Fernox F1 or Mb-1 will guard against corrosion.
- Sime Ltd promote the fitting of TF1 System filter with any new boiler installation.
- It is important to check the inhibitor concentration after installation, system modification and annually on a service visit in accordance with the manufacturer’s instructions. [Note on benchmark service record this has been complete]. Test kits are available from inhibitor stockists; the return of the Fernox test report should be kept with the Benchmark to validate warranty.
- Where Central heating systems are susceptible to freezing a mixture of inhibitor and anti-freeze should be added in accordance with the DWTA code of practice and the Manufacturers instructions.
- The addition of sealing agents to system water is not recommended because deposits can be left in heat exchanger causing circulation issues.

6.8 Boiler installation

Murelle Advanced HE MkII are supplied with a hanging bracket and a template to assist installation.

For installation:
- position the bracket (1) on the wall (2), where you want to install the boiler
- check that it is straight and mark where to make the holes for the plugs
- drill the holes and insert the expansion plugs (3) which will be used to fix the bracket securely
- hook the boiler onto the pins (4) and secure it using the nuts and washers supplied.
CAUTION
The boiler should be located observing the required clearances, and provide safe, adequate service access.

6.9 Plumbing connections
The plumbing connections have the following characteristics and dimensions.

6.9.1 Plumbing accessories (optional)
To facilitate plumbing and gas connections to the systems, the accessories as shown in the table below are available and are to be ordered separately from the boiler.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand off frame (25 mm)</td>
<td>8082212</td>
</tr>
<tr>
<td>Valve cover</td>
<td>8094530</td>
</tr>
</tbody>
</table>

NOTE: kit instructions are supplied with the accessory itself or are to be found on the packaging.

6.10 Condensate outlet/collection
To ensure safe disposal of the condensate produced by the flue gases, reference should be made to BS6798:2009. The boiler incorporates a condensate trap which has a seal of 75 mm, therefore no additional trap is required. The condensate trap can be filled prior to the installation of the flue by carefully pouring 1 litre of water into the exhaust connection.

NOTE: All pipework must have a continuous fall from the boiler and must be resistant to corrosion by condensate, copper or steel is NOT suitable. It should be noted that the connection of a condensate pipe to a drain may be subject to local building control requirements (Dealing with Condensate - see Appendix 1).

6.11 Gas supply
Murelle Advanced HE MkII boilers leave the factory prearranged for gas G20 (methane) and can also work with G31 (propane) without the need for any type of mechanical conversion. Simply select parameter “03” (see “Parameter setting and display” page 37) and set the type of gas to be used.

If changing the type of gas to be used, carry out the entire appliance “COMMISSIONING” phase (page 36).

The gas connection must be made using seamless steel or copper tube. Where the piping has to pass through walls, a suitable insulating sleeve must be provided.

When sizing gas piping, from the meter to the boiler, take into account both the volume flow rates (consumption) in m3/h and the relative density of the gas in question. The sections of the piping making up the system must be such as to guarantee a supply of gas sufficient to cover the maximum output available from the boiler, limiting pressure loss between the gas meter and any apparatus being used to not greater than 1.0 mbar for family II gases (natural gas).

An adhesive data badge is sited inside the front panel; it contains all the technical data identifying the boiler and the type of gas for which the boiler is arranged.

CAUTION
If the gas supply is changed from G20 to G31, mark the box on the TECHNICAL DATA PLATE.

G31 - 36 mbar

CAUTION
A sealed system must only be filled by a competent person (see section Method of filling a sealed system page 34).
CAUTION

- The appliance must be installed as a room sealed device and unless stated in writing from the manufacturer, in accordance with the current edition of BS 5440-1. The information shown in this manual is for guidance and parts identification.
- Prior to fitting the flue, the condensate trap can be filled by carefully pouring water into the exhaust section of the flue connection.

6.12.1 Flue Terminal Positions

<table>
<thead>
<tr>
<th>Terminal position</th>
<th>Minimum spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300 mm</td>
</tr>
<tr>
<td>B</td>
<td>75 mm</td>
</tr>
<tr>
<td>C/D</td>
<td>200 mm</td>
</tr>
<tr>
<td>E</td>
<td>75 mm</td>
</tr>
<tr>
<td>F</td>
<td>300 mm</td>
</tr>
<tr>
<td>G</td>
<td>300 mm</td>
</tr>
<tr>
<td>H</td>
<td>600 mm</td>
</tr>
<tr>
<td>I</td>
<td>1,200 mm</td>
</tr>
<tr>
<td>J</td>
<td>1,200 mm</td>
</tr>
<tr>
<td>K</td>
<td>1,500 mm</td>
</tr>
<tr>
<td>L</td>
<td>300 mm</td>
</tr>
<tr>
<td>M</td>
<td>300 mm</td>
</tr>
<tr>
<td>N</td>
<td>300 mm</td>
</tr>
<tr>
<td>P</td>
<td>300 mm</td>
</tr>
<tr>
<td>Q</td>
<td>600 mm</td>
</tr>
</tbody>
</table>

- If the terminal discharges into a pathway or passageway check that combustion products will not cause nuisance and that the terminal will not obstruct the passageway.
- Where the lowest part of the terminal is fitted less than 2 m (78 in) above ground, above a balcony or above a flat roof to which people have access, the terminal MUST be protected by a purpose designed guard.
- The air inlet/outlet flue duct MUST NOT be closer than 10 mm (0.4 in) to combustible material.
- In certain weather conditions the terminal may emit a plume of steam. This is normal but positions where this would cause a nuisance should be avoided.

Fig. 18
6.12.2 Installation of coaxial flues 60/100mm – 80/125mm

Coaxial flue kits that are supplied separately. The diagrams below illustrate some examples of fluing options allowed and the maximum lengths than can be achieved. It is essential that a flue gas analysis point is made available directly above the boiler.

IMPORTANT:
- The insertion of each additional 90° bend with a diameter of 60/100 (code 8095850) reduces the available section by 1.5 meters.
- The insertion of each additional 90° bend with a diameter of 80/125 (code 8095970) reduces the available section by 2 meters.
- Each additional 45° curve installed a diameter of 60/100 (code 8095950) reduces the available length by 1.0 metres.
- Each additional 45° curve installed a diameter of 80/125 (code 8095970) reduces the available length by 1.0 metres.

HORIZONTAL FLUES MUST BE LEVEL

NOTE: Before connecting accessories, it is always advisable to lubricate the internal part of the gaskets with silicon products. Avoid using oils and greases.

LIST OF ø 60/100 ACCESSORIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Length of pipe Ø 60/100</th>
<th>Length of pipe Ø 80/125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (m)</td>
<td>V (m)</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Murelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced HE 30</td>
<td>5</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced HE 40</td>
<td>4</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIST OF ø 80/125 ACCESSORIES

1 Coaxial duct kit L. 785 code 8096253
2a Extension L. 1000 code 8096171
2b Extension L. 500 code 8096170
3 Adapter for ø 80/125 code 8093150
5 Tile for joint code 8091300
6 Terminal for roof exit L. 1285 code 8091212 (includes 8086950)
Installation of separate ducts 80mm

The boiler can be installed with separate air inlet and exhaust ducts. The figure below illustrate some examples of the fluing options allowed and the associated losses of the accessories. The total load loss is the sum of the load losses of the accessories used. The maximum load loss must not exceed 15 mm H2O, and the maximum flue length must not exceed 25 m inlet and exhaust.

NOTE
Before connecting accessories, it is always advisable to lubricate the internal part of the gaskets with silicon products. Avoid using oils and greases.

<table>
<thead>
<tr>
<th>Murelle Advanced HE 30</th>
<th>Murelle Advanced HE 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load loss - mm H2O</td>
<td>Load loss - mm H2O</td>
</tr>
<tr>
<td>Inlet</td>
<td>Exhaust</td>
</tr>
<tr>
<td>1 Air/smoke divider, code 8093050</td>
<td>0</td>
</tr>
<tr>
<td>2 90° bend, code 80774050</td>
<td>0,25</td>
</tr>
<tr>
<td>3 a Extension 80mm L 1000, code 8077351</td>
<td>0,20</td>
</tr>
<tr>
<td>3 b Extension 80mm L 500, code 8077350</td>
<td>0,20</td>
</tr>
<tr>
<td>7 45° bend, code 80771051</td>
<td>0,20</td>
</tr>
<tr>
<td>9 Inlet/exhaust fitting, code 8091401</td>
<td>-</td>
</tr>
<tr>
<td>10 Articulated tile, code 8091300</td>
<td>-</td>
</tr>
<tr>
<td>11 Vertical roof terminal, code 8091204</td>
<td>1,10</td>
</tr>
<tr>
<td>12 Inlet/exhaust fitting, code 8091401</td>
<td>-</td>
</tr>
<tr>
<td>14 Coaxial Terminal, code 8091204</td>
<td>1,10</td>
</tr>
</tbody>
</table>

* This loss includes the losses with use of item 9 or 13

It is essential that flue gas analysis points are made available directly above the boiler, these are incorporated in the twin flue adaptor code 8093050.

CAUTION
- The maximum overall length is determined by the sum of the load losses of the individual flue components must not exceed 15 mm H2O.
- The maximum flue length must not exceed 25m – air intake, 25m – exhaust.
6.13 Electrical connections and External controls

The boiler is supplied with a mains cable. Connect the boiler to a 230V - 50Hz single phase power supply through a fused mains switch, with at least 3 mm spacing between contacts, fused at 3 amps.

If this cable needs to be replaced, an original spare must be requested from Sime Ltd.

The heating control of the boiler can be achieved by connection of a volt free room thermostat, room thermostat/timer.

For connection details see section “External timers and Room Thermostats”).

The heating control of the boiler can be achieved by connection of either a volt free room thermostat, room thermostat/timer or a dedicated control (listed below). For connection details see section “External timers and Room Thermostats”).

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>External sensor kit (ß=3435, NTC 10KOhm at 25°C)</td>
<td>8094101</td>
</tr>
<tr>
<td>Power cable [dedicated]</td>
<td>6323875</td>
</tr>
<tr>
<td>Remote control HOME (open therm)</td>
<td>8092280</td>
</tr>
<tr>
<td>Remote control HOME PLUS (open therm)</td>
<td>8092281</td>
</tr>
</tbody>
</table>

CAUTION

Only qualified persons in compliance with the instructions contained in this manual are permitted to install, commission and maintain this boiler. The installation of this boiler must be in accordance with the relevant requirements of the current Gas Safety (installation and use) Regulation 1998, the local building regulations, and I.E.E. wiring regulations.

WARNING

Before carrying out any interventions described:

– isolate the power supply
– isolate the gas cock
– avoid contact with any hot surfaces.

To make the electrical connections:

– remove the screws (1), pull the front panel (2) forwards and release it from the top by lifting it

– remove the screws (3) securing the control panel (4)
– move the panel (4) upwards (a) but keeping it in the side guides (5) to the end of travel
– bring it forwards and down (b) until it is horizontal

– insert the connection wires through the grommet (6) and the opening (7) on the control panel
– bring the control panel (4) to the original position and secure it with the screws (3) which were removed previously
– connect the component wires to the terminal board (8) following the indications provided on the data plate (9) and as shown in section “Wiring diagram”.

![Fig. 23](image1)

![Fig. 24](image2)

![Fig. 25](image3)

![Fig. 26](image4)
CAUTION
It is compulsory:
– to use an omnipolar cut-off switch, disconnect switch, in compliance with EN standards (contact opening of at least 3 mm)
– if the power cable is to be replaced, that ONLY a special cable is used with a factory produced re-wired connector, ordered as a spare part and connected by a professionally qualified person
– to connect the earth wire to an effective earthing system [*]
– that before any work is done on the boiler, the mains power is disconnected by setting the main system switch to “OFF”.

(*) Sime Ltd declines all responsible for any injury or damage to persons, animals or property as a result of failure to provide adequate earthing of the appliance.

DO NOT
Do not use water pipes for earthing the appliance.

6.13.1 External sensor
The boiler is designed for connection to an external temperature sensor code 8094101, which will automatically regulate the central heating delivery temperature.
This means that the delivery temperature of the boiler can vary on the basis of the external temperature depending on the climatic curve selected from those shown in the diagram (Fig. 27).
When fitting the sensor on the outside of the building, follow the instructions provided on the packaging of the product itself.

Climatic curve

<table>
<thead>
<tr>
<th>Delivery temperature</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>External temperature</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>-20</td>
</tr>
</tbody>
</table>

Fig. 27

CAUTION
If there is an external sensor, the heating delivery SET is corrected using correction factor K in order to adapt better to the user’s needs. To modify this value, carry out the same procedure as when modifying the heating SET but with the possible range between 0.0 and 9.0.

6.13.2 External timers and Room Thermostats
The heat demand can be by a “clean contact” conforming to EN607301 connected to TA (see section “Wiring diagram”) or by use of a dedicated Sime Remote Control (Home or Home Plus). The boiler will automatically detect when a dedicated control is connected.

6.13.3 EXAMPLE of use of the command/control device on some types of heating systems

KEY
M System flow
R System return
CR Remote control
SE External sensor
TA Room thermostat for boiler activation
TZ1-TZ3 Room thermostat for the zone
VZ1-VZ3 Zone valves
RL1-RL3 Zone relays
P1-P3 Zone pump
TSB Low temperature safety thermostat

ONE DIRECT ZONE system, external sensor and room thermostat.

MULTI ZONE system - with zone valve, room thermostat and external sensor.

CAUTION
Set the parameter “tS 17 = DELAY SYSTEM PUMP ACTIVATION to allow the opening of zone valve Vz.
6.14 Refilling or emptying

Before carrying out the operation described below, isolate the boiler power supply.

6.14.1 Method of filling a sealed system

A sealed system must only be filled by a competent person using a method similar to that shown in figure below.

- remove the two screws [1], pull the front panel [2] forwards and release it from the top by lifting it.

Domestic hot water circuit:
- open the domestic hot water inlet isolation valve [4]
- open each of the DHW taps until air is expelled.

Heating circuit:
- open the isolation and air bleeding valves in the highest points of the system
- loosen the automatic bleed valve [3]
- open the heating circuit isolation valves [8] and [9]
- activate the filling system “Method of filling a sealed system”, and fill the heating system until a pressure of 1-1.2 bar is shown on the display
- stop the filling system
- check that there is no air in the system by bleeding all the radiators and the circuit on the high points of the system.

NOTE: to completely remove all air from the system, it is recommended that this operation is repeated a number of times.
– check the pressure on the display and if necessary top up until the correct pressure reading appears
– close the automatic bleed valve (3)
– it is recommended that the condensate trap is filled prior to fitting the flue, by carefully pouring water into the exhaust connection.

6.14.3 EMPTYING operations

Domestic hot water circuit:
– close the domestic hot water circuit isolation valve (4)
– open one or more than one hot water taps and drain the domestic hot water circuit.

Boiler:
– loosen the automatic bleed valve (3)
– close the heating circuit isolation valves (8) and (9)
– connect a rubber hose to the boiler drain valve (7) and open it
– when it has fully emptied, close the drain valve (7)
– close the automatic bleed valve (3).
7 COMMISSIONING

7.1 Preliminary operations

WARNING
- Should it be necessary to access the areas in the bottom part of the appliance, make sure that the system components and pipes are not hot (risk of burning).
- Before replenishing the heating system, put on protective gloves.

Before commissioning the appliance, check that:
- the type of gas is correct for the appliance
- the gas isolation valves for the heating system and the water system are open
- the pump impeller rotates freely
- the siphon has been filled.

7.2 Before commissioning

After having carried out the preliminary operations, proceed as follows:
- set the main system switch to “ON”
- the type of gas for which the boiler has been calibrated, “nG” (methane) or “LG” (LPG) will appear followed by the power. Finally “- -” will appear on the display
- check that the system pressure as shown when the system is cold, is between 1 and 1.2 bar
- press the button once for at least 1 second to select “SUMMER mode” . The value of the delivery sensor detected at that moment will appear on the display

7.2.1 Automatic self-calibrating procedure

Carry out the “Automatic self-calibrating procedure” as follows:
- press button and set the DOMESTIC HOT WATER SET to maximum using the button
- press and hold down the buttons and at the same time for approximately 10 seconds until the flashing symbols and appear on the display
- as soon as the symbols begin to flash, release the buttons and and press the button OR, within 3 seconds
- the “Automatic self-calibrating procedure” starts
- to dissipate the heat, turn on one or more DHW taps
- the values flash on the display: “100” (maximum value), followed by an “intermediate value” and finally “00” (minimum value)

It may take up 15 minutes for the “self-calibrating procedure” to end and the message “SUMMER mode” to reappear on the display. Once the procedure has terminated:
- close the taps opened previously and check that the appliance shuts down.
- if there is a fault, the message “ALL” will appear on the display, the fault code (eg. “06” – no flame detected) and the message reset .

CAUTION
To restore the start conditions press and hold the button OR for more than 3 seconds. This operation can be performed up to a maximum of 6 times without the “self-calibrating procedure” being interrupted.
- press the button once for at least 1 second to select “WINTER mode” . The value of the heating water temperature detected at that moment will appear on the display
- operate the heating controls and check that the boiler starts and operates correctly
- using the procedure shown in section “Chimney sweep function” complete inlet working gas pressure test and a flue gas analysis.
- record in Benchmark commissioning Check list (page 47).
7.3 Parameter setting and display

To go into the parameter menu:
- from the selected mode (e.g., WINTER)

- press the buttons `r` and `t` (for approximately 5 seconds) at the same time until "PAR 01" (parameter number) and the value set (0÷4) appears on the display

- press the button `l` to scroll up the list of parameters and then `r` to scroll down the list

NOTE: holding the buttons `r` or `t` increases the speed of the scrolling movement.

- once the required parameter has been reached, press the buttons `+` or `-` to modify the value within the permitted range. The modifications are stored automatically.

When all the parameter modifications have been made, exit the parameter menu by pressing and holding down the buttons `r` and `t` all at the same time for at least 5 seconds until the initial screen is displayed.

7.4 List of parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
<th>Range</th>
<th>U/M</th>
<th>Step</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 01</td>
<td>Index showing boiler power in kW</td>
<td>2 = 30 kW 4 = 40 kW</td>
<td>-</td>
<td>1</td>
<td>2 or 4</td>
<td></td>
</tr>
<tr>
<td>PAR 02</td>
<td>Hydraulic configuration</td>
<td>1 = system 2 = N/A 3 = N/A 4 = N/A 5 = N/A 6 = boiler with heat pump</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PAR 03</td>
<td>Gas Type Configuration</td>
<td>0 = G20 1 = G31</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PAR 04</td>
<td>Combustion configuration</td>
<td>0 = sealed chamber with combustion control 1 = open chamber with smoke thermostat 2 = Low NOx</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PAR 08</td>
<td>External sensor value correction</td>
<td>-5 .. +5 °C</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 09</td>
<td>Ignition fan speed</td>
<td>80 .. 180 RPMx25</td>
<td>1</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMESTIC HOT WATER - HEATING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 10</td>
<td>Boiler Antifreeze Threshold</td>
<td>0 .. +10 °C</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 11</td>
<td>External Sensor Antifreeze Threshold</td>
<td>-9 .. +5 °C</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 12</td>
<td>Heating Curve Incline</td>
<td>0 .. 80</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>PAR 13</td>
<td>Minimum Heating Temperature Adjustment</td>
<td>20 .. PAR 14 °C</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 14</td>
<td>Maximum Heating Temperature Adjustment</td>
<td>PAR 13 .. 80 °C</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 15</td>
<td>Maximum power in CH mode</td>
<td>0 .. 100 %</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 16</td>
<td>Heating Post-Circulation Time</td>
<td>0 .. 99 seconds x 10</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 17</td>
<td>Heating Pump Activation Delay</td>
<td>0 .. 60 seconds x 10</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 18</td>
<td>Heating Re-ignition Delay</td>
<td>0 .. 60 Min</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 19</td>
<td>Domestic Hot Water Modulation with Flow meter</td>
<td>0 .. 1</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 20</td>
<td>Maximum power domestic hot water</td>
<td>0 .. 100 %</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 21</td>
<td>Minimum power heating/domestic hot water (premixed)</td>
<td>0 .. 100 %</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR 22</td>
<td>Domestic hot water preheating enabling</td>
<td>0 = OFF 1 = ON</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The displayed temperature is 38°C.
2. The selected mode is WINTER.
<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
<th>Range</th>
<th>U/M</th>
<th>Step</th>
<th>Default</th>
</tr>
</thead>
</table>
| PAR | 23 | External relay 1 function | 0 = not used
1 = remote alarm NO
2 = remote alarm NC
3 = zone valve
4 = automatic filling
5 = external request
6 = recirculation pump
7 = zone valve with OT
8 = relaunch pump
9 = boiler with heat pump [circulator] | - | - | 0 |
| PAR | 24 | External relay 2 function | 0 = not used
1 = remote alarm NO
2 = remote alarm NC
3 = zone valve
4 = automatic filling
5 = external request
6 = recirculation pump
7 = zone valve with OT
8 = relaunch pump
9 = boiler with heat pump [circulator] | - | - | 0 |
| PAR | 25 | Auxiliary TA function | 0 = according to TA
1 = TA Antifreeze
2 = domestic hot water disabled | - | 1 | 0 |
| PAR | 26 | Zone Valve / Pump Relaunch Delay | 0 .. 99 | Min | 1 | 1 |
| PAR | 28 | DHW activation delay with solar power | 0 .. 30 | Min | 1 | 0 |
| PAR | 29 | Anti-legionella Function [Only hot water tank] | 50 .. 80 | - | 1 | -- |
| PAR | 30 | Maximum domestic hot water temperature | 35 .. 67 °C | 1 | 60 |
| PAR | 35 | Digital / analogue Pressure switch | 0 = water pressure switch
1 = water pressure transducer [with ALL 09]
2 = water pressure transducer [without ALL 09] | - | 1 | 1 |
| PAR | 39 | Modulating pump minimum speed | 20 .. 100 | % | 1 | 30 |
| PAR | 4.0 | Modulating Pump Speed | -- = No modulation
AU = Automatic 30 .. 100 | % | 10 | AU |
| PAR | 41 | ΔT Modulating pump delivery/Return | 10 .. 40 °C | 1 | 20 | |
| PAR | 42 | Select heat pump or boiler convenience [only if PAR 02 = 6] | -20 .. 30 °C | - | 5 |
| PAR | 43 | Heat pump boiler aid activation delay [only if PAR 02 = 6] | 1 .. 60 | Min | - | 3 |
| PAR | 47 | System pump forcing [only in winter mode] | 0 = Disabled
1 = Enabled | - | 1 | 0 |

RESET

PAR 48 INST Parameter set to default
0 .. 1 | - | - | 0 |

In the event of a fault/malfunction the message “ALL” will appear on the display with the alarm number eg. “ALL 04” [Domestic Hot Water Sensor Fault].

NOTE: after having repaired the fault, when the alarm number appears on the display together with the message **RESET** [see figure], press the button **OR** for approximately 3 seconds to start the appliance up again.

Before repairing the fault:
- disconnect the appliance from the mains power by setting the main switch to “OFF”
- as a precautionary measure, close the gas isolation valve.

Resolve the problem and start-up the boiler again.
7.5 Display of operating data and counters

Once the boiler is operating a qualified technician can view the operating data and the counters as follows:

From the operating screen in the mode enabled at that moment (WINTER or SUMMER):

- go into “DISPLAY” by pressing the buttons and at the same time for more than 3 seconds until the following screen appears

From this point, the technician has 2 options:

- scroll through the list of “information (PAR)” and “counters (PARc)” by pressing the button. Scrolling will be in sequence

- display the “activated alarms” (no more than 10) by pressing the button

- Once in this section, proceed with button or

When all the values have been displayed, exit the menu by pressing and holding down the button for approximately 5 seconds until the initial screen is displayed.

TABLE OF INFORMATION DISPLAYED

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
<th>Range</th>
<th>U/M</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>00</td>
<td>SW version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAR</td>
<td>01</td>
<td>External sensor (SE)</td>
<td>-99..99°C</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>02</td>
<td>Delivery sensor temperature (SM)</td>
<td>-99</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>03</td>
<td>Exhaust temperature (SF)</td>
<td>-99..99°C</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>04</td>
<td>Domestic hot water sensor temperature (SS)</td>
<td>-99..99°C</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>05</td>
<td>AUX auxiliary sensor</td>
<td>-99..99°C</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>06</td>
<td>Actual heating SET temperature</td>
<td>Par.13…Par.14</td>
<td>°C</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>07</td>
<td>Power level</td>
<td>0..99%</td>
<td>%</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>08</td>
<td>DHW Flow rate</td>
<td>0..99 l/min</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>PAR</td>
<td>09</td>
<td>Water pressure transducer reading</td>
<td>0..99 bar</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>PAR</td>
<td>10</td>
<td>Actual speed fan number</td>
<td>0..99 RPM x 100</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE OF COUNTER DISPLAYED

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
<th>Range</th>
<th>U/M</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>c0</td>
<td>total no. of boiler operating hours</td>
<td>0..99 h x 1000</td>
<td></td>
<td>0.1; from 0.0 to 9.9; 1; from 10 to 99</td>
</tr>
<tr>
<td>PAR</td>
<td>c1</td>
<td>total no. of burner operating hours</td>
<td>0..99 h x 1000</td>
<td></td>
<td>0.1; from 0.0 to 9.9; 1; from 10 to 99</td>
</tr>
<tr>
<td>PAR</td>
<td>c2</td>
<td>total no. of burner ignitions</td>
<td>0..99 h x 1000</td>
<td></td>
<td>0.1; from 0.0 to 9.9; 1; from 10 to 99</td>
</tr>
<tr>
<td>PAR</td>
<td>c3</td>
<td>total no. faults</td>
<td>0..99 x 1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>c4</td>
<td>total no. of times installer parameters “ALL” accessed</td>
<td>0..99</td>
<td>x 1</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>c5</td>
<td>total no. of times OEM parameters accessed</td>
<td>0..99 x 1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>c6</td>
<td>Countdown to the next service</td>
<td>1..199 months</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>c7</td>
<td>total no. of calibrations</td>
<td>1..199 x 1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE OF ACTIVATED ALARMS/FAULTS

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>A0</td>
<td>Last activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A1</td>
<td>Last but one activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A2</td>
<td>Third from last activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A3</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A4</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A5</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A6</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A7</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A8</td>
<td>Previous activated alarm/fault</td>
</tr>
<tr>
<td>PAR</td>
<td>A9</td>
<td>Previous activated alarm/fault</td>
</tr>
</tbody>
</table>
7.6 Checks

7.6.1 Chimney sweep function

The chimney sweeper function is used by the qualified maintenance technician to check the mains gas pressure, detect the combustion parameters and to measure the combustion efficiency. A combustion analysis should not be conducted until a satisfactory inlet working pressure test has been completed.

This function lasts 15 minutes and is activated by proceeding as follows:

- if the panel (2) has not already been removed, remove the two screws (1), pull the front panel (2) forwards and release it from the top by lifting it.

- remove the screws (3) securing the control panel (4)
- move the panel (4) upwards (a) but keeping it in the side guides (5) to the end of travel
- bring it forwards and down (b) until it is horizontal.

- isolate the gas cock
- loosen the screw of the “mains pressure” point (6) and connect a pressure gauge

- open the gas cock
- power the boiler by setting the main switch to “ON”
- press the button OR for at least 1 second until “SUMMER” mode has been selected
- press and hold down the buttons — and + at the same time for approximately 10 seconds until the message “Hi” appears on the display together with the flashing symbols ☀ and ✶

- press the button + to make the boiler operate at maximum power “Hi” and check that the mains gas pressure value on the pressure gauge is correct.
- press the button — to make the boiler operate at minimum power “Lo”. The message “Lo” will appear on the display together with the flashing symbols ☀ and ✶.
– take the combustion data reading
– press the button \(\text{◆} \) to exit the “Chimney sweeper Procedure”. The boiler water delivery temperature will appear on the display

<table>
<thead>
<tr>
<th>Type of gas</th>
<th>G20</th>
<th>G31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (mbar)</td>
<td>19</td>
<td>36</td>
</tr>
</tbody>
</table>

NOTE: There are negligible losses of working gas pressure attributable to the boiler as the gas cock is connected directly to the gas valve.

7.7 Domestic hot water comfort function (preheating)

Murelle Advanced HE MkII models have a “domestic hot water comfort” function which ensures the best performance in terms of domestic hot water, reducing the time necessary for the hot water to become available and ensuring that the temperature is stable.

To activate the function:
– select parameter “PAR 22” (see “Parameter setting and display”) and set it to value 1
– exit parameter settings and press button \(\uparrow \) for approximately 5 seconds until the symbol \(\text{◆} \) appears on the display and begins to flash indicating that the function has been activated.

To deactivate the function:
– press button \(\uparrow \) again for approximately 5 seconds until the symbols \(\text{◆} \) and \(\text{◆} \) appear on the display and begin to flash indicating that the function has been deactivated.

7.8 Gas conversion

Murelle Advanced HE MkII models can work with G20 or G31 without the need for any mechanical conversion. Simply select parameter “PAR 03” (see “Parameter setting and display” page 37) and set the type of gas to be used.

If changing the type of gas to be used, carry out the entire appliance “COMMISSIONING” phase (page 36).

CAUTION
Conversion may ONLY be carried out by Professionally Qualified Personnel.

CAUTION
If the gas supply is changed from G20 to G31, mark the box on the TECHNICAL DATA PLATE.

7.9 Heating power output adjustment

To comply with Building regulations, the heating output must be set according to the requirements of the installed heating system. This is done by adjustment of “parameter 15” (PAR 15). Calculate the heating requirements of the heating system in kW. Determine what that value is, as a % of the nominal heat output of the boiler, see table “Technical features” page 19. Access the parameters as shown in “Parameter setting and display” page 37, and adjust PAR 15 to that % value.

Example:
– Heating system with 8 radiators, average 1.5 kW per radiator total heat
– Requirement 12 kW \((8 \times 1.5)\)
– Maximum nominal heat output of boiler = 23.6 kW
– PAR 15 = 12/23.6 = 50.8%. Set PAR 15 to 51%.

CAUTION
As a condition of the warranty and to ensure correct operation and efficiency, it is important that the boiler is serviced every 12 months, within 30 days of the anniversary of the installation date ensure the required information is recorded in the Gas Boiler System Service Interval Record (page 48) [Benchmark].
8 MAINTENANCE

8.1 Servicing
As a condition of the warranty and to ensure correct operation and efficiency, it is important that the boiler is serviced every 12 months, within 30 days of the anniversary of the installation date ensure the required information is recorded in the Gas Boiler System Service Interval Record (page 48) (Benchmark).

⚠️ CAUTION
- Only qualified persons in compliance with the instructions contained in this manual are permitted to install, commission and maintain this boiler. Suitable protective safety equipment MUST be worn. The installation of this boiler must be in accordance with the relevant requirements of the current Gas Safety (installation and use), the local building regulations, and I.E.E. wiring regulations.
- Make sure that the system components and pipes are not hot (risk of burning).

⚠️ WARNING
Before carrying out any interventions described:
- isolate the power supply
- isolate the gas cock
- avoid contact with any hot surfaces.

8.2 External cleaning

8.2.1 Cleaning the case
When cleaning the cladding, use a cloth dampened with soap and water or alcohol for stubborn marks.

🚫 DO NOT
Do not use abrasive products.

8.3 Burner Inspection

8.3.1 Burner access
To access the internal parts of the boiler:
- remove the screws (1), pull the front panel (2) forwards and release it from the top by lifting it

![Fig. 39](image)

![Fig. 40](image)
– loosen the clips (6) and extract the air inlet pipe (7)
– unscrew the swivel joint (8)
– extract the connectors (9) from the fan and disconnect the electrode cable (10)

CAUTION
Work carefully when removing the assembly (13) to prevent any damage occurring to the internal insulation of the combustion chamber and the door seal.

8.3.2 Cleaning the burner and the combustion chamber
The combustion chamber and the burner do not require any particular maintenance. Simply brush them with a soft brush.

8.3.3 Checking the ignition/detection electrode
Check the state of the ignition/detection electrode and replace if necessary. Check the measurements as per the drawing whether the ignition/detection electrode is replaced or not.

8.3.4 Final operations
After having cleaned the combustion chamber and the burner:
– remove any carbon residue
– check that the seal and the insulation of the door (12) to the combustion chamber are undamaged. Replace if necessary
– refit the assembly by carrying out the same operations for removal but in the reverse order and tighten the screws (11) of the door to the combustion chamber
– reconnect the connections to the fan and the electrode.

8.4 Checks

8.4.1 Checking the flue
Check that the flue is undamaged and complete.

8.4.2 Checking the expansion vessel pressure
Close the flow and return valves and drain the boiler. Check the expansion vessel pressure is not less than 1 bar. If this is not the case, pressurize it to the correct value (see section Expansion vessel: page 21.

8.4.3 System Inhibiter concentration
Check and if required correct the inhibiter concentration.

Once the checks described above have been completed:
– refill the boiler as described in section “SYSTEM Filling page 34”
– check that the siphon has been filled correctly
– Start the boiler, activate the “Chimney sweep function” page 40 and carry out combustion analysis as detailed in Appendix 2
– refit the front panel securing it with the two screws which were removed previously
– complete the service record in this manual.
8.5 Circuit Board Replacement

Should the circuit board be replace, the engineer MUST set the parameters as indicated in this table and in the sequence shown.

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Description</th>
<th>Parameter setting and display</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR 01</td>
<td>0</td>
<td>Index showing boiler power in kW</td>
<td>2 4</td>
</tr>
<tr>
<td>PAR 02</td>
<td>0</td>
<td>Hydraulic configuration</td>
<td>0 = combi 1 = system 2 = N/A 3 = N/A 4 = N/A 5 = N/A 6 = boiler with heat pump</td>
</tr>
<tr>
<td>PAR 03</td>
<td>0</td>
<td>Gas Type Configuration</td>
<td>0 = G20; 1 = G31 0 or 1 6 = boiler with heat pump</td>
</tr>
</tbody>
</table>

To enter "Parameter setting and display" see page 37.

8.6 Malfunction codes and possible solutions

LIST OF MALFUNCTION/FAULT ALARMS

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Fault</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL 10</td>
<td>Auxiliary sensor fault</td>
<td>- Check PAR 02 "hydraulic configuration" - Check the electrical connection</td>
<td></td>
</tr>
<tr>
<td>ALL 11</td>
<td>Gas valve modulator disconnected</td>
<td>- Check the electrical connection</td>
<td></td>
</tr>
<tr>
<td>ALL 12</td>
<td>Domestic hot water sensor fault in tank mode</td>
<td>- Set the parameter PAR 04 (Combustion configuration) to 0</td>
<td></td>
</tr>
<tr>
<td>ALL 13</td>
<td>Exhaust sensor (SF) intervention</td>
<td>- Check the sensor is working - Replace the smoke probe</td>
<td></td>
</tr>
<tr>
<td>ALL 14</td>
<td>Exhaust sensor (SF) fault</td>
<td>- Replace the smoke probe - Contact the Technical Assistance Centre</td>
<td></td>
</tr>
<tr>
<td>ALL 15</td>
<td>Fan check cable disconnected</td>
<td>- Check the connection cable between the fan and the board</td>
<td></td>
</tr>
<tr>
<td>ALL 18</td>
<td>Condensate level fault</td>
<td>- Check for any clogging in the pipe which takes the condensate to the siphon - Check that the siphon is not clogged</td>
<td></td>
</tr>
<tr>
<td>ALL 28</td>
<td>Maximum number of consecutive resets reached (6)</td>
<td>- Wait 1 hour and try un-blocking the board again - Contact the Technical Assistance Centre</td>
<td></td>
</tr>
<tr>
<td>ALL 30</td>
<td>Return sensor fault (boiler sensor fault for T models)</td>
<td>- Replace the return probe - Check parameters - Contact the Technical Assistance Centre</td>
<td></td>
</tr>
<tr>
<td>ALL 37</td>
<td>Fault due to low network voltage</td>
<td>- Check the voltage - Contact your network provider</td>
<td></td>
</tr>
<tr>
<td>ALL 40</td>
<td>Incorrect supply frequency detected</td>
<td>- Check your network provider</td>
<td></td>
</tr>
<tr>
<td>ALL 41</td>
<td>Flame loss more than 6 consecutive times</td>
<td>- Check the ignition/detection electrode - Check the gas supply (open valve) - Check mains gas pressure</td>
<td></td>
</tr>
<tr>
<td>ALL 42</td>
<td>Button fault</td>
<td>- Check that buttons are working</td>
<td></td>
</tr>
<tr>
<td>ALL 43</td>
<td>Open Therm communication fault</td>
<td>- Check the OT electric connection</td>
<td></td>
</tr>
<tr>
<td>ALL 44</td>
<td>Gas valve timeout fault without flame</td>
<td>- Check gas valve and board</td>
<td></td>
</tr>
<tr>
<td>ALL 56</td>
<td>Lock for AT delivery/return over max limit (open vent)</td>
<td>- Contact the Technical Assistance Centre</td>
<td></td>
</tr>
<tr>
<td>ALL 57</td>
<td>Lock for low temperature (FTL) check (open vent)</td>
<td>- Contact the Technical Assistance Centre</td>
<td></td>
</tr>
<tr>
<td>ALL 62</td>
<td>Self-calibrating procedure is required</td>
<td>- Carry out the self-calibrating procedure (see the specific section)</td>
<td></td>
</tr>
<tr>
<td>ALL 72</td>
<td>Incorrect positioning of the delivery sensor</td>
<td>- Check delivery sensor operation and position</td>
<td></td>
</tr>
<tr>
<td>ALL 74</td>
<td>Second delivery sensor fault</td>
<td>- Check second delivery sensor operation and position</td>
<td></td>
</tr>
<tr>
<td>ALL 77</td>
<td>EV2 SGV current max/min absolute limits error</td>
<td>- Check gas valve and board</td>
<td></td>
</tr>
<tr>
<td>ALL 78</td>
<td>EV2 SGV current upper limit error</td>
<td>- Check gas valve and board</td>
<td></td>
</tr>
<tr>
<td>ALL 79</td>
<td>EV2 SGV current lower limit error</td>
<td>- Check gas valve and board</td>
<td></td>
</tr>
<tr>
<td>ALL 80</td>
<td>Fault on the valve control logic line/valve cable damaged</td>
<td>- Check gas valve and board</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>No.</td>
<td>Fault</td>
<td>Solution</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>ALL</td>
<td>81</td>
<td>Lockout due to combustion during start-up</td>
<td>- Check for blockage in flue
- Check air diaphragm (for BF models)
- Check gas calibration
- Bleed the air from the gas circuit</td>
</tr>
<tr>
<td>ALL</td>
<td>82</td>
<td>Block due to numerous combustion control failures</td>
<td>- Check electrode
- Check outlets
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>83</td>
<td>Irregular combustion (temporary error)</td>
<td>- Check for blockage in flue
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>84</td>
<td>Flow rate reduced for (presumed) low pressure on mains gas</td>
<td>- Check gas flow rate</td>
</tr>
<tr>
<td>ALL</td>
<td>88</td>
<td>Internal error (board component protection)</td>
<td>- Check the board is working
- Replace board</td>
</tr>
<tr>
<td>ALL</td>
<td>89</td>
<td>Unstable combustion feedback signal error</td>
<td>- Check electrode
- Check outlets
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>90</td>
<td>Combustion set cannot be reached error</td>
<td>- Check electrode
- Check outlets
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>92</td>
<td>System has reached maximum air correction error (at the minimum flow rate)</td>
<td>- Check electrode
- Check outlets
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>93</td>
<td>Combustion set cannot be reached error</td>
<td>- Check electrode
- Check outlets
- Check air diaphragm (for BF models)
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>95</td>
<td>Flame signal micro interruptions error</td>
<td>- Check electrode
- Check board
- Check electric power supply
- Check gas calibration</td>
</tr>
<tr>
<td>ALL</td>
<td>96</td>
<td>Lockout due to flue (exhaust) blockage</td>
<td>- Check for blockage in flue
- Check the smoke outlet and electrode position (not touching the burner)</td>
</tr>
<tr>
<td>ALL</td>
<td>98</td>
<td>SW error, board start-up</td>
<td>- Contact the Technical Assistance Centre</td>
</tr>
<tr>
<td>ALL</td>
<td>99</td>
<td>General board error</td>
<td>- Contact the Technical Assistance Centre
- Frequent relief valve intervention
- Check circuit pressure
- Check expansion vessel
- Limited production of domestic hot water
- Check the diverter valve
- Check that plate heat exchanger is clean
- Check domestic hot water circuit valve</td>
</tr>
</tbody>
</table>

8.6.1 Maintenance request

When it is time to perform maintenance on the boiler, the symbol shows on the display.

Contact the technical assistance service to organise the necessary work.

CAUTION

As a condition of the warranty and to ensure correct operation and efficiency, it is important that the boiler is serviced every 12 months, within 30 days of the anniversary of the installation date ensure the required information is recorded in the Gas Boiler System Service Interval Record [page 48] [Benchmark].
Benchmark Commissioning & Warranty Validation Service Record

It is a requirement that the boiler is installed and commissioned to the manufacturers’ instructions and the data fields on the commissioning checklist completed in full.

To instigate the boiler warranty the boiler needs to be registered with the manufacturer within one month of the installation. The warranty rests with the end-user (consumer), and they should be made aware it is ultimately their responsibility to register with the manufacturer, within the allotted time period.

It is essential that the boiler is serviced in line with the manufacturers’ recommendations, at least annually. This must be carried out by a competent Gas Safe registered engineer. The service details should be recorded on the Benchmark Service and Interim Boiler Work Record and left with the householder. Failure to comply with the manufacturers’ servicing instructions and requirements will invalidate the warranty.

www.hhic.co.uk

This Commissioning Checklist is to be completed in full by the competent person who commissioned the boiler as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission according to the manufacturers’ instructions and complete this Benchmark Commissioning Checklist will invalidate the warranty. This does not affect the customer’s statutory rights.

* All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

© Heating and Hotwater Industry Council (HHIC)

www.centralheating.co.uk
GAS BOILER SYSTEM COMMISSIONING CHECKLIST & WARRANTY VALIDATION RECORD

<table>
<thead>
<tr>
<th>Address:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler make and model:</td>
<td></td>
</tr>
<tr>
<td>Boiler serial number:</td>
<td></td>
</tr>
</tbody>
</table>

Commissioned by (PRINT NAME):
Gas Safe registration number:
Company name:
Telephone number:
Company email:
Company address:
Commissioning date:

Heating and hot water system complies with the appropriate Building Regulations?
Yes

Optional: Building Regulations Notification Number (if applicable):
Boiler Plus requirements (tick the appropriate box(es))

<table>
<thead>
<tr>
<th>Boiler Plus option chosen for combination boiler in ENGLAND</th>
<th>Weather compensation</th>
<th>Smart thermostat with automation and optimisation</th>
<th>Load compensation</th>
<th>Flue Gas Heat Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone valves</td>
<td>pre-existing</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Thermostatic radiator valves</td>
<td>pre-existing</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Automatic bypass to system</td>
<td>pre-existing</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Underfloor heating</td>
<td>pre-existing</td>
<td>Fitted</td>
<td>Not required</td>
<td></td>
</tr>
</tbody>
</table>

Time and temperature control to hot water
Cylinder thermostat and programmer/timer
Combination boiler

Water quality
The system has been flushed, cleaned and a suitable inhibitor applied upon final fit, in accordance with BS7583 and boiler manufacturers' instructions
Yes

What system cleaner was used?
Brand:
Product:

What inhibitor was used?
Brand:
Product:

CENTRAL HEATING MODE measure and record (as appropriate)
Gas rate (for combination boilers only)
m³/hr or ft³/hr

<table>
<thead>
<tr>
<th>Central heating output left at factory settings?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic gas inlet pressure</td>
<td>mbar</td>
<td></td>
</tr>
<tr>
<td>Central heating flow temperature</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Central heating return temperature</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

System correctly balanced/imbalanced?
Yes

COMBINATION BOILERS ONLY
Is the installation in a hard water area (above 200ppm)?
Yes
No

Water scale reducer/softener
pre-existing
Fitted
Not required

What type of scale reducer/softener has been fitted?
Brand:
Product:

Water meter fitted?
Yes
No

If yes- DHW expansion vessel
pre-existing
Fitted
Not required

Pressure reducing valve
pre-existing
Fitted
Not required

DOMESTIC HOT WATER MODE Measure and record
Gas rate
m³/hr or ft³/hr

<table>
<thead>
<tr>
<th>Dynamic gas inlet pressure at maximum rate</th>
<th>mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold water inlet temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Hot water has been checked at all outlets</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Temperature
°C

CONDENSATE DISPOSAL
The condensate drain has been installed in accordance with the manufacturers’ instructions and/or BS5454/BS6798
Yes

Point of termination
Internal
External (only where internal termination impractical)

Method of disposal
Gravity
Pumped

ALL INSTALLATIONS
Record the following
At max rate:
CO ppm
CO₂ ppm
% CO/CO₂
Ratio

At min rate (where possible):
CO ppm
CO₂ ppm
% CO/CO₂
Ratio

Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?
Yes

The operation of the boiler and system controls have been demonstrated to and understood by the customer
Yes

The manufacturers’ literature, including Benchmark Checklist and Service Record, has been explained and left with the customer
Yes

Commissioning Engineer’s signature
(Customer’s signature) (To confirm satisfactory demonstration and receipt of manufacturers’ literature)

© Heating and Hotwater Industry Council (HHIC)
www.centralheating.co.uk
47

* All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.
SERVICE & INTERIM BOILER WORK RECORD

It is recommended that your boiler and heating system are regularly serviced and maintained, in line with manufacturers’ instructions, and that the appropriate service / interim work record is completed.

Service provider
When completing a service record (as below), please ensure you have carried out the service as described in the manufacturers’ instructions. Always use the manufacturers’ specified spare parts.

<table>
<thead>
<tr>
<th>Date:</th>
<th>ENGINEER INTERIM WORK ON BOILER</th>
<th>Date:</th>
<th>ENGINEER INTERIM WORK ON BOILER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineer name: Company name:
Telephone No: Gas Safe registration No:
Max rate CO ppm CO₂ % CO₂/CO₂
Min rate CO ppm CO₂ % CO₂/CO₂
Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?
Gas rate: m³/h OR ft³/h
Wore parts fitted? Yes No
Parts fitted:
System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *
Comments:
Signature:

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

<table>
<thead>
<tr>
<th>Date:</th>
<th>ENGINEER INTERIM WORK ON BOILER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineer name: Company name:
Telephone No: Gas Safe registration No:
Max rate CO ppm CO₂ % CO₂/CO₂
Min rate CO ppm CO₂ % CO₂/CO₂
Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?
Gas rate: m³/h OR ft³/h
Wore parts fitted? Yes No
Parts fitted:
System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *
Comments:
Signature:

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

© Heating and Hotwater Industry Council (HHIC)

www.centralheating.co.uk
SERVICE & INTERIM BOILER WORK RECORD

It is recommended that your boiler and heating system are regularly serviced and maintained, in line with manufacturers’ instructions, and that the appropriate service / interim work record is completed.

Service provider

When completing a service record (as below), please ensure you have carried out the service as described in the manufacturers’ instructions. Always use the manufacturers specified spare parts.

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone N°:</td>
<td>Gas Safe registration N°:</td>
</tr>
<tr>
<td>Max rate CO ppm CO₂ % CO/CO₂</td>
<td>Min rate CO ppm CO₂ % CO/CO₂</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?</td>
<td>yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Were parts fitted?</td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *</td>
<td>yes</td>
</tr>
<tr>
<td>Comments:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

** TABLE CONTINUES **

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone N°:</td>
<td>Gas Safe registration N°:</td>
</tr>
<tr>
<td>Max rate CO ppm CO₂ % CO/CO₂</td>
<td>Min rate CO ppm CO₂ % CO/CO₂</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?</td>
<td>yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Were parts fitted?</td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *</td>
<td>yes</td>
</tr>
<tr>
<td>Comments:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

** TABLE CONTINUES **

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone N°:</td>
<td>Gas Safe registration N°:</td>
</tr>
<tr>
<td>Max rate CO ppm CO₂ % CO/CO₂</td>
<td>Min rate CO ppm CO₂ % CO/CO₂</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?</td>
<td>yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Were parts fitted?</td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *</td>
<td>yes</td>
</tr>
<tr>
<td>Comments:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

<table>
<thead>
<tr>
<th>SERVICE/INTERIM WORK ON BOILER</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer name:</td>
<td>Company name:</td>
</tr>
<tr>
<td>Telephone N°:</td>
<td>Gas Safe registration N°:</td>
</tr>
<tr>
<td>Max rate CO ppm CO₂ % CO/CO₂</td>
<td>Min rate CO ppm CO₂ % CO/CO₂</td>
</tr>
<tr>
<td>Where possible, has a flue integrity check been undertaken in accordance with manufacturers’ instructions, and readings are correct?</td>
<td>yes</td>
</tr>
<tr>
<td>Gas rate: m³/h OR ft³/h</td>
<td>Were parts fitted?</td>
</tr>
<tr>
<td>System inhibitor concentration has been checked and appropriate action taken, in accordance with BS 7593 and boiler manufacturers’ instructions. *</td>
<td>yes</td>
</tr>
<tr>
<td>Comments:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

* A System inhibitor efficacy test is required on every annual service in accordance with the manufacturers’ instructions and BS 7593. It is only acceptable to not have undertaken this if the service engineers attendance visit was in between annual services to attend a non-water facing component.

* All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

© Heating and Hotwater Industry Council (HHIC)

www.centralheating.co.uk
EXPLODED VIEWS
<table>
<thead>
<tr>
<th>Pos.</th>
<th>Code</th>
<th>Description</th>
<th>Murelle Advanced HE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>6264560</td>
<td>Boiler fixing bracket</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>6264555</td>
<td>Boiler fixing bracket</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>6010980</td>
<td>Support exchangers bracket</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>6010984</td>
<td>Support exchangers bracket</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>6147612</td>
<td>Plug for air vent connection</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>6226444</td>
<td>O-ring 115 dia. 11,91x2,62</td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>6226624</td>
<td>Spring air vent knob</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>6278913</td>
<td>Main exchanger body</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>6278910</td>
<td>Main exchanger body</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>627130</td>
<td>Probe NTC 0.4X40</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>6010982</td>
<td>Support exchangers bracket</td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>6269006</td>
<td>Main exchanger door insulation</td>
<td>x</td>
</tr>
<tr>
<td>10</td>
<td>5198340</td>
<td>Main exchanger door</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>6228870</td>
<td>Composition chamber O-ring</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>6248871</td>
<td>Glass fibre sealing cord</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>6318180</td>
<td>Glass fixing flange</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>6020103</td>
<td>Sight glass</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>6234672</td>
<td>Sight glass gasket</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>6030115</td>
<td>Burner + gasket kit</td>
<td>x</td>
</tr>
<tr>
<td>17</td>
<td>6030116</td>
<td>Burner + gasket kit</td>
<td>x</td>
</tr>
<tr>
<td>17</td>
<td>6170829</td>
<td>Gasket for burner flange</td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td>6288992</td>
<td>Air-gas hose</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>6278892</td>
<td>Air-gas hose gasket</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>6279991</td>
<td>Side low air-gas hose</td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td>6174809</td>
<td>Gasket for ignition electrode</td>
<td>x</td>
</tr>
<tr>
<td>22</td>
<td>6221670</td>
<td>Ignition-ionisation electrode</td>
<td>x</td>
</tr>
<tr>
<td>23</td>
<td>6289590</td>
<td>Bracket</td>
<td>x</td>
</tr>
<tr>
<td>24</td>
<td>6264818</td>
<td>Gasket for fan flange</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>6263900</td>
<td>Air/gas mixer</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>6249291</td>
<td>Air/gas mixer</td>
<td>x</td>
</tr>
<tr>
<td>26</td>
<td>6028703</td>
<td>Gasket for duct flange</td>
<td>x</td>
</tr>
<tr>
<td>27</td>
<td>621412</td>
<td>Fan</td>
<td>x</td>
</tr>
<tr>
<td>28</td>
<td>6278073</td>
<td>Smoke chamber</td>
<td>x</td>
</tr>
<tr>
<td>29</td>
<td>6288855</td>
<td>P.C. inlet/outlet smokes gasket</td>
<td>x</td>
</tr>
<tr>
<td>30</td>
<td>6291150</td>
<td>Upper protection shield</td>
<td>x</td>
</tr>
<tr>
<td>30</td>
<td>6291150</td>
<td>Upper protection shield</td>
<td>x</td>
</tr>
<tr>
<td>31</td>
<td>5183729</td>
<td>Rectang. expansion vessel 1.1/4"</td>
<td>x</td>
</tr>
<tr>
<td>31</td>
<td>5183730</td>
<td>Rectang. expansion vessel L.10</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>2030225</td>
<td>Gasket Ø 5,51x1,2</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>6274701</td>
<td>Plug 1/4"</td>
<td>x</td>
</tr>
<tr>
<td>34</td>
<td>6273608</td>
<td>Water pressure transducer</td>
<td>x</td>
</tr>
<tr>
<td>35</td>
<td>6246393</td>
<td>Spring clip</td>
<td>x</td>
</tr>
<tr>
<td>36</td>
<td>6226464</td>
<td>ORing diam. 15x2</td>
<td>x</td>
</tr>
<tr>
<td>37</td>
<td>6217450</td>
<td>Flexible pipe M.F. 3/8" L=300</td>
<td>x</td>
</tr>
<tr>
<td>38</td>
<td>6226463</td>
<td>Pipe fixing spring</td>
<td>x</td>
</tr>
<tr>
<td>39</td>
<td>2030226</td>
<td>Gasket Ø 10,2x14,8x2</td>
<td>x</td>
</tr>
<tr>
<td>40</td>
<td>6277211</td>
<td>Water trap</td>
<td>x</td>
</tr>
<tr>
<td>41</td>
<td>6191930</td>
<td>Cap Ø 1/2"</td>
<td>x</td>
</tr>
<tr>
<td>42</td>
<td>6034570</td>
<td>Condensate drainage pipe</td>
<td>x</td>
</tr>
<tr>
<td>43</td>
<td>2051123</td>
<td>Clamp diam. 24,2</td>
<td>x</td>
</tr>
<tr>
<td>44</td>
<td>1010125</td>
<td>Rubber pipe dia. 15x2,5</td>
<td>x</td>
</tr>
<tr>
<td>45</td>
<td>2051120</td>
<td>Clamp diam. 17,3</td>
<td>x</td>
</tr>
<tr>
<td>46</td>
<td>601162</td>
<td>Air intake pipe 40</td>
<td>x</td>
</tr>
<tr>
<td>47</td>
<td>2051023</td>
<td>Hose clamp Ø 40-60</td>
<td>x</td>
</tr>
<tr>
<td>48</td>
<td>6243838</td>
<td>Gas valve</td>
<td>x</td>
</tr>
<tr>
<td>49</td>
<td>2030249</td>
<td>Gasket Ø 24x17x3</td>
<td>x</td>
</tr>
<tr>
<td>50</td>
<td>6277445</td>
<td>Pipe connecting gas valve-mixer</td>
<td>x</td>
</tr>
<tr>
<td>50</td>
<td>6277446</td>
<td>Pipe connecting gas valve-mixer</td>
<td>x</td>
</tr>
<tr>
<td>51</td>
<td>6050474</td>
<td>Nozzle 530</td>
<td>x</td>
</tr>
<tr>
<td>51</td>
<td>6050472</td>
<td>Nozzle 450</td>
<td>x</td>
</tr>
<tr>
<td>52</td>
<td>6224477</td>
<td>Rubber gasket OR Ø 17x3</td>
<td>x</td>
</tr>
<tr>
<td>53</td>
<td>6226636</td>
<td>D.H.W. elektrovalve fix.spring</td>
<td>x</td>
</tr>
<tr>
<td>54</td>
<td>6227422</td>
<td>Flowing pipe to C.H. system</td>
<td>x</td>
</tr>
<tr>
<td>54</td>
<td>6227426</td>
<td>Flowing pipe to C.H. system</td>
<td>x</td>
</tr>
<tr>
<td>55</td>
<td>6234412</td>
<td>O-ring 3068</td>
<td>x</td>
</tr>
<tr>
<td>56</td>
<td>6233787</td>
<td>Temperature sensor</td>
<td>x</td>
</tr>
<tr>
<td>57</td>
<td>6146729</td>
<td>100% C safety stat</td>
<td>x</td>
</tr>
</tbody>
</table>
Manufacturer’s instructions must be followed for the correct connection of the condensate discharge pipe from the boiler as this may vary due to the design of the boiler. For example a visible air break and trap is not required if there is a trap with a minimum condensate seal of 75 mm incorporated into the boiler.

Internal Pipe Run In Unheated Spaces
Condensate discharge pipes that are routed in an unheated space such as a loft or garage should be insulated to prevent freezing.

Internal Condensate Pipe Discharge Termination

Internal condensate discharge pipework must be a minimum of 19mm ID (typically 22mm OD) plastic pipe or as per manufacturer’s instructions and this should “fall” a minimum of 45mm per metre away from the boiler, taking the shortest practicable route to the termination point. (45mm as per BS6798, 52mm per metre as per industry practice is specified in the following diagrams)

To minimise the risk of freezing during prolonged sub-zero conditions, an internal “gravity discharge point” such as an internal soil stack (preferred method), internal kitchen, utility room or bathroom waste pipe e.g. from a sink, basin, bath or shower should be adopted, where possible.

Note - A suitable permanent connection to the foul waste pipe should be used. Figures 1, 2(a), 2(b) show appropriate connection methods.
Figure 1 – Connection of condensate discharge pipe to internal soil and vent stack. Note – Check manufacturer’s instructions to see if an air break is required.

Key

1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 75 mm incorporated into the boiler
5 Soil and vent stack
6 Invert
7 450 mm minimum up to three storeys
8 Minimum internal diameter 19 mm
Internal Condensate Pipe Discharge Termination

Figure 2(a) – Connection of a condensate discharge pipe downstream of a sink, basin, bath or shower waste trap.
Note – Check manufacturer’s instructions to see if an air break is required.

Key
1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 75 mm incorporated into the boiler. In this case the 100 mm is measured to the trap in the boiler.
5 Sink, basin, bath or shower
6 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45 °
 Note – the maximum external condensate discharge length is 3 metres
7 Sink lip
8 Minimum internal diameter 19 mm
9 Pipe size transition
10 Minimum internal diameter 30 mm
11 Water/weather proof insulation
12 Drain cover/leaf guard
Internal Condensate Pipe Discharge Termination

Figure 2(b) – Connection of a condensate discharge pipe upstream of a sink, basin, bath or shower waste trap

Key
1 Boiler
2 Visible air break at plug hole – alternative connection can be below sink trap
3 75 mm sink, basin, bath or shower waste trap
4 Sink, basin, bath or shower with integral overflow
5 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45°
 Note – the maximum external condensate discharge length is 3 metres
6 Minimum internal diameter 19 mm
7 Pipe size transition
8 Minimum internal diameter 30 mm
9 Water/weather proof insulation
10 Fit drain cover/leaf guard

October 2018 Issue 1.0
Internal Condensate Pipe Discharge Termination

The possibility of waste pipes freezing downstream of the connection point should be considered when determining a suitable connection point - e.g. a slightly longer pipe run to an internal soil stack may be preferable to a shorter run connecting into a kitchen waste pipe discharging directly through the wall to an external drain.

Note - Where “gravity discharge” to an internal termination is not physically possible (e.g. the discharge point is above the appliance location, or access is obstructed by a doorway), or where very long internal pipe runs would be required to reach a suitable discharge point, then a condensate pump should be used.

External waste pipes from kitchens, utility rooms or bathrooms such as sink, basin, and bath or shower waste outlets should be insulated with waterproof UV resistant, class 0 material, terminated below the grid but above the water line and a drain/leaf guard fitted. The waste pipe should be cut at 45 degrees where it terminates into the grid. (See insulation section for guidance on suitable materials).

Condensate Pumps

Use of a Condensate Pump to an Internal Termination
Condensate can be removed using a proprietary condensate pump, of a specification recommended by the boiler or pump manufacturer. In order to minimise the risk of freezing during prolonged sub-zero spells, one of the following methods internal to the property for terminating the boiler condensate pump to a foul water discharge point should be adopted such as an internal soil stack (preferred method), internal kitchen, utility room or bathroom waste pipe such as sink, basin, and bath or shower waste. Figure 3 shows a typical connection method.
Internal Condensate Pipe Discharge Termination

Figure 3 – Connection of a condensate pump - typical method (NB manufacturer’s detailed instructions should be followed).
Note – Any external pipe work should be insulated, pipe cut at 45 degrees and a drain/leaf guard fitted.

Key
1 Condensate discharge from boiler
2 Condensate pump
3 Visible air break at plug hole
4 Sink or basin with integrated overflow
5 75mm sink waste trap

Key
1 Boiler
2 Visible air break at plug hole
3 75 mm sink, basin, bath or shower waste trap
4 Sink, basin, bath or shower with integral overflow
5 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45 ° Note – the maximum external condensate discharge length is 3 metres
6 Minimum internal diameter 19 mm
7 Pipe size transition
8 Minimum internal diameter 30 mm
9 Water/weather proof insulation
10 Fit drain cover/leaf guard
External Connections

Only fit an external boiler condensate drain connection if an internal gravity or pumped connection is *impractical* to install.

The pipe work from the boiler should be of a minimum 19mm ID or as per manufacturer’s instructions and the condensate discharge pipe shall be run in a standard drainpipe material, e.g. poly (vinyl chloride) (PVC), un-plasticized poly (vinyl chloride) (PVC-U), acrylonitrile butadiene-styrene (ABS), polypropylene (PP) or chlorinated poly (vinyl chloride) (PVC-C).

Note - Fixing centres for brackets should be a maximum of 300mm for flexible pipe and 500mm for solid pipe and manufacturer’s recommendations should be followed.

The condensate pipe should be run internally as far as possible before going externally and the pipe diameter should be increased to a minimum of 30mm ID (typically 32mm OD) before it passes through the wall. The angle of the pipe should slope downwards by at least 3 degrees as it passes through the wall to assist in maintaining a good velocity as the condensate exits the building.

The external pipe run should be kept as short as possible to a maximum of 3 metres, taking the most direct and “most vertical” route to the discharge point, with no horizontal sections in which condensate might collect.
External Connections

Figure 4 – Connection of condensate discharge pipe to external soil and vent stack

Key
1 Boiler
2 Visible air break
3 75 mm trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 75mm incorporated into the boiler.
5 Soil and vent stack
6 Invert
7 450mm minimum up to three storeys
8 Minimum internal diameter 19 mm
9 Pipe size transition point
10 Minimum internal diameter 30mm
11 Water/weather proof insulation

October 2018 Issue 1.0
External Connections

Alternative Solutions
Cold weather protection methods approved or endorsed by boiler manufacturers and/or service organisations may be adopted if these are considered suitable by the parties involved. It is the responsibility of the manufacturer of these products to ensure they have completed the necessary testing or calculations to ensure the product offers suitable protection to prevent the condensate pipe from freezing. The product manufacturer should provide information as to what level of external temperature and for what time period the product can protect against sub-zero temperatures, i.e. -15°C for 48 hours. BS6798 refers to devices that pump the condensate produced by a condensing boiler to a fine misting nozzle in the boiler flue terminal so that the condensate is discharged with the hot flue gas. (BS6798 section 6.3.8 note 4). The boiler manufacturer’s instructions will provide advice regarding fitting and siting of the flue terminal to ensure safe disposal of the condensate.

Additional Measures
At least one of the following measures should be fitted in addition to the measures detailed above for external condensate discharge pipes

- Insulate external pipe with a minimum thickness of insulation to be 19mm “O” class PVC coated material.
- Fit trace heating – with insulation as recommended by manufacturer.
- Fit internal auxiliary(additional) high volume syphon unit

Auxiliary Syphon – Fitted Internally
Auxiliary siphons fitted inside the premises assist with the siting of the boiler where an external condensate pipe must be fitted. The storage capacity of the auxiliary siphon increases the volume of condensate discharge reducing the risk of freezing. A further reduction in the potential for the pipe to freeze is achieved when combined with the external insulation requirements.
External Connections

Electric Trace Heating
Trace heating with an external thermostat can be fitted to the external condensate pipe to raise the temperature of the condensate pipe in freezing conditions. Trace heating takes the form of an electrical heating element run in physical contact along the length of the condensate pipe. The pipe is usually covered with thermal insulation to retain heat losses from the pipe. Heat generated by the element then maintains the temperature of the pipe. If such a system is used then the installation instructions of the trace heating manufacturer and any specific recommendations regarding pipe diameter, insulation, etc. should be followed. All other relevant guidance on condensate discharge pipe installation should also be followed.

Insulation Materials
Insulation used for external condensate pipes, sink or washing machine waste pipes should be of class ‘O’ grade with an outer coating that is weather proof, bird/animal proof, and UV resistant finish. A minimum of 19mm thick insulation is recommended for 32mm external pipes.

Use of Air Breaks In Condensate Discharge Pipes
Heating engineers should follow manufacturer’s instructions on the use of air breaks in condensate discharge pipes. A visible air break is not required if the boiler condensate trap has a minimum condensate seal of 75mm incorporated into the boiler.

Connecting to a rain water downpipe/External Soil Stack
When an external soil stack or rain water downpipe is used as the termination (NB only permissible if this downpipe passes to a combined foul and rainwater drainage system) an external air break must be installed between the condensate discharge pipe and the downpipe to avoid reverse flow of rainwater/sewage into the boiler should the downpipe itself become flooded or frozen.

Figure 5 shows a suitable connection method. Pipe insulation should be fitted.
External Connections

Figure 5 – External termination to rainwater downpipe (NB only combined foul/rainwater drain)

Key
1 Condensate discharge pipe from boiler
2 Pipe size transition point
3 Water/weather proof insulation
4 43mm 90° male/female bend
5 External rain water pipe into foul water
6 External air break
7 Air gap
8 68mm PVCu strap on fitting
9 Minimum internal diameter 19mm
10 Minimum internal diameter 30mm
11 End cut at 45°
External Connections

External Termination of the Condensate Pipe
Where the condensate discharge pipe is terminated over an open foul drain or gully, the pipe should terminate below the grating level, but above water level, in order to minimise “wind chill” at the open end. Pipe drainage and resistance to freezing will be improved if the termination end of the condensate pipe is cut at 45 degrees as opposed to a straight cut.

The use of a drain cover (such as those used to prevent blockage by leaves) must be fitted to offer further protection from wind chill. Figure 6 (following page) shows a suitable connection method. Where the condensate drain pipe terminates in a purpose-designed soakaway (see BS 6798:2014 or boiler installation manual for soakaway design requirements) any above-ground section of condensate discharge pipe should be run and insulated as described above. Figure 7 (following page) shows a suitable connection method.

Unheated Areas in Buildings
Internal condensate drainage pipes run in unheated areas such as lofts, basements and garages should be treated as external connections and insulated accordingly. Weather proof materials may not be necessary and should be assessed by the heating engineer.

Use of Air Breaks In Condensate Discharge Pipes
Installers should follow the manufacturer’s instructions on the use of air breaks in condensate discharge pipes. A visible air break and trap is not required if the boiler condensate trap has a minimum condensate seal of 75 mm incorporated into the boiler.
External Connections

Figure 6 – External drain, gully or rainwater hopper

Key
1 Boiler
2 Visible air break
3 38mm minimum trap
4 Visible air break and trap not required if there is a trap with a minimum condensate seal of 38 mm incorporated into the boiler – refer to manufacturers instructions
5 External length of pipe 3 m maximum
6 Open end of condensate discharge pipe direct into gully 25 mm min below grating but above water level; end cut at 45 °
7 Minimum internal diameter 19 mm
8 Pipe size transition point
9 Minimum internal diameter 30 mm
10 Water/weather proof insulation
11 Fit drain cover/leaf guard
External Connections

Figure 7 – Example of a purpose made soakaway

Key
1 Condensate discharge pipe from boiler
2 Ground (this section of the condensate discharge pipe may be run either above or below round level); End cut at 45°
3 Diameter 100 mm minimum plastic tube
4 Bottom of tube sealed
5 Limestone chippings
6 Two rows of three 12 mm holes at 25 mm centres, 50 mm from bottom of tube and facing away from house
7 Hole depth 400 mm minimum by 300 mm diameter
8 Minimum internal diameter 19 mm
9 Pipe size transition point
10 Minimum internal diameter 30 mm
11 Water/weather proof insulation
The installation instructions should have been followed, gas type verified and gas supply pressure/rate checked as required prior to commissioning.

As part of the installation process, ESPECIALLY WHERE A FLUE HAS BEEN FITTED BY PERSONS OTHER THAN THE BOILER INSTALLER, visually check the integrity of the whole flue system to confirm that all components are correctly assembled, fixed and supported. Check that manufacturer’s maximum flue lengths have not been exceeded and all guidance has been followed (e.g. Gas Safe Technical Bulletin TB008).

The flue gas analyser should be of the correct type, as specified by BS 7967. Prior to its use, the flue gas analyser should have been maintained and calibrated as specified by the manufacturer. The installer must have the relevant competence for use of the analyser.

Check and zero the analyser IN FRESH AIR as per analyser manufacturer’s instructions.

NOTE

the air gas ratio valve is factory-set and must not be adjusted DURING COMMISSIONING unless this action is recommended after discussions with SIME LTD.

If any such adjustment is recommended and further checking of the boiler is required the installer/service engineer must be competent to carry out this work and to use the flue gas analyser accordingly.

If the boiler requires conversion to operate with a different gas family (e.g. conversion from natural gas to LPG) separate guidance will be provided by the boiler manufacturer and must be followed.

SET BOILER TO MAXIMUM RATE

Set the boiler to operate at maximum rate (full load condition). Allow sufficient time for combustion to stabilise.

NOTE - Do not insert analyser probe during this period to avoid possible “flooding” of sensor.

CARRY OUT FLUE INTEGRITY CHECK USING ANALYSER

Insert analyser probe into the air inlet test point and allow readings to stabilise.

NOTE - The flue must always be installed with flue test point. This will be located within the first piece connected to the boiler.

VERIFY FLUE INTEGRITY

Analyzer readings indicate that combustion products and inlet air must be mixing. Further investigation of the flue is therefore required.

Check that flue components are assembled, fixed and supported as per boiler/flue manufacturer’s instructions.

Check that flue and flue terminal are not obstructed.

Is O2 less than or equal to 20.6% and CO2 less than 0.2%?

YES

CHECK CO AND COMBUSTION RATIO AT MAXIMUM RATE

With boiler still set at maximum rate, insert analyser probe into flue gas sampling point. Allow readings to stabilise before recording.

NOTE - if no flue gas sampling point is present and the correct procedure is not specified in the manual, contact SIME LTD Technical Helpline for advice.

Turn off appliance and call SIME LTD Technical Helpline for advice.

the appliance must not be commissioned or used, until problems are identified and resolved.

Is CO less than 350ppm AND CO/CO2 ratio less than 0.004?

YES

SET BOILER TO MINIMUM RATE

In accordance with boiler instructions, set boiler to operate at minimum rate (to minimum load condition). Allow sufficient time for combustion to stabilise.

NOTE: If manufacturer’s instructions do not specify how to set boiler to minimum rate contact Technical Helpline for advice.

CHECK CO AND COMBUSTION RATIO AT MINIMUM RATE

With boiler set at minimum rate, insert analyser probe into flue gas sampling point. Allow readings to stabilise before recording.

NOTE - if no flue gas sampling point is present and the correct procedure is not specified in the manual, contact SIME LTD Technical Helpline for advice.

Turn off appliance and call SIME LTD Technical Helpline for advice.

the appliance must not be commissioned or used until problems are identified and resolved.

NOTE

Check and record CO and combustion ratio at both maximum AND minimum rate before contacting SIME LTD.

Is CO less than 350ppm AND CO/CO2 ratio less than 0.004?

YES

BOILER IS OPERATING SATISFACTORILY

no further actions required

Ensure test points are capped, boiler case is correctly replaced and all other commissioning procedures are completed.

Complete Benchmark Checklist, recording CO and combustion ratio readings as required.
Murelle ADVANCED HE

<table>
<thead>
<tr>
<th></th>
<th>30 MkII</th>
<th>40 MkII</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.H.W load profile declared</td>
<td>XL</td>
<td>XXL</td>
</tr>
<tr>
<td>C.H. energy efficiency class</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>D.H.W. energy efficiency class</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Heat output (kW)</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>C.H. annual energy consumption (GJ)</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>D.H.W. annual combustible consumption (GJ)</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>C.H. seasonal energy efficiency (%)</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>D.H.W. energy efficiency (%)</td>
<td>84</td>
<td>83</td>
</tr>
<tr>
<td>Sound power dB(A)</td>
<td>56</td>
<td>54</td>
</tr>
</tbody>
</table>

Specific precautionary measures to be adopted at the time of assembly, installation or maintenance of the equipment are contained in the boiler instruction manual.

Conforming to Annex IV (item 2) of the Delegated Regulations (EU) No. 811/2013 which supplements Directive 2010/30/EU.
Information requirements for boiler space heaters, boiler combination heaters

Model(s): MURELLE ADVANCED HE 30 MkII

<table>
<thead>
<tr>
<th>Condensing boiler:</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-temperature boiler:</td>
<td>Yes</td>
</tr>
<tr>
<td>B11 boiler:</td>
<td>No</td>
</tr>
<tr>
<td>Cogeneration space heater:</td>
<td>No</td>
</tr>
<tr>
<td>Combination heater:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Equipped with a supplementary heater: No

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal heat output for space heating</td>
<td>P_n</td>
<td>24</td>
<td>kW</td>
</tr>
<tr>
<td>Seasonal space heating energy efficiency</td>
<td>η_s</td>
<td>93</td>
<td>%</td>
</tr>
</tbody>
</table>

For boiler space heaters and boiler combination heaters:

- For boiler space heaters and boiler combination heaters: usefull heat output
- At nominal heat output and high-temperature regime a | P_u | 23.6 | kW |
- At 30% of nominal heat output and low-temperature regime a | P_l | 7.1 | kW |

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary electricity consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At full load</td>
<td>$e_{l_{max}}$</td>
<td>0.044</td>
<td>kW</td>
</tr>
<tr>
<td>At part load</td>
<td>$e_{l_{min}}$</td>
<td>0.010</td>
<td>kW</td>
</tr>
<tr>
<td>In standby mode</td>
<td>PSB</td>
<td>0.003</td>
<td>kW</td>
</tr>
<tr>
<td>Standby heat loss</td>
<td>P_{stby}</td>
<td>0.088</td>
<td>kW</td>
</tr>
<tr>
<td>Ignition burner power consumption</td>
<td>P_{ign}</td>
<td>0</td>
<td>kW</td>
</tr>
<tr>
<td>Emissions of nitrogen oxides</td>
<td>NOx</td>
<td>37</td>
<td>mg/kWh</td>
</tr>
</tbody>
</table>

For combination heaters:

<table>
<thead>
<tr>
<th>Declared load profile</th>
<th>XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water heating energy efficiency</td>
<td>η_{wh}</td>
</tr>
<tr>
<td>Daily electricity consumption</td>
<td>Q_{elec}</td>
</tr>
<tr>
<td>Daily fuel consumption</td>
<td>Q_{fuel}</td>
</tr>
</tbody>
</table>

Contact details

Sime Ltd - 1a Blue Ridge Park - Thunderhead Ridge - Glasshoughton, Castleford, WF10 4UA

a. High-temperature regime means 60°C return temperature at heater inlet and 80°C feed temperature at heater outlet.

b. Low-temperature regime means for condensing boilers 30°C, for low-temperature boilers 37°C and for other heaters 50°C return temperature.

[*] The yield data have been calculated using the higher heating value.
Information requirements for boiler space heaters, boiler combination heaters

Model(s): MURELLE ADVANCED HE 40 MkII
Condensing boiler: Yes
Low-temperature boiler: Yes
B11 boiler: No
Cogeneration space heater: No
Equipped with a supplementary heater: No
Combination heater: Yes

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal heat output for space heating</td>
<td>P_n</td>
<td>35</td>
<td>kW</td>
<td>Seasonal space heating energy efficiency</td>
<td>η_s</td>
<td>93</td>
<td>%</td>
</tr>
<tr>
<td>For boiler space heaters and boiler combination heaters: useful heat output</td>
<td></td>
<td></td>
<td></td>
<td>For boiler space heaters and boiler combination heaters: useful efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At nominal heat output and high-temperature regime</td>
<td>P_4</td>
<td>34,5</td>
<td>kW</td>
<td>At nominal heat output and high-temperature regime (*)</td>
<td>η_4</td>
<td>88,7</td>
<td>%</td>
</tr>
<tr>
<td>At 30% of nominal heat output and low-temperature regime</td>
<td>P_l</td>
<td>10,35</td>
<td>kW</td>
<td>At 30% of nominal heat output and low-temperature regime (*)</td>
<td>η_1</td>
<td>97,7</td>
<td>%</td>
</tr>
<tr>
<td>Auxiliary electricity consumption</td>
<td></td>
<td></td>
<td></td>
<td>Other items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At full load</td>
<td>e_l</td>
<td>0,066</td>
<td>kW</td>
<td>Standby heat loss</td>
<td>P_{stby}</td>
<td>0,092</td>
<td>kW</td>
</tr>
<tr>
<td>At part load</td>
<td>e_l</td>
<td>0,014</td>
<td>kW</td>
<td>Ignition burner power consumption</td>
<td>P_{ign}</td>
<td>0</td>
<td>kW</td>
</tr>
<tr>
<td>In standby mode</td>
<td>PSB</td>
<td>0,003</td>
<td>kW</td>
<td>Emissions of nitrogen oxides</td>
<td>NOx</td>
<td>55</td>
<td>mg/kWh</td>
</tr>
</tbody>
</table>

For combination heaters:

| Declared load profile | XXL | **Water heating energy efficiency** | η_{wh} | 83 | % |
| Daily electricity consumption | Qelec | 0,151 | kWh | Daily fuel consumption | Qfuel | 29,206 | kWh |

Contact details: Sime Ltd - 1a Blue Ridge Park - Thunderhead Ridge - Glasshoughton, Castleford, WF10 4UA

a. High-temperature regime means 60°C return temperature at heater inlet and 80°C feed temperature at heater outlet.
b. Low-temperature regime means 30°C for condensing boilers, 37°C for low-temperature boilers, and 50°C for other heaters.

[*) The yield data have been calculated using the higher heating value.